On positively divisible non-Markovian processes

被引:0
|
作者
Canturk, Bilal [1 ,2 ]
Breuer, Heinz-Peter [1 ,2 ]
机构
[1] Univ Freiburg, Inst Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany
[2] Univ Freiburg, EUCOR Ctr Quantum Sci & Quantum Comp, Hermann Herder Str 3, D-79104 Freiburg, Germany
关键词
non-Markovian stochastic processes; P-divisibility; Chapman-Kolmogorov equation; Kolmogorov consistency conditions;
D O I
10.1088/1751-8121/ad5525
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There are some positively divisible non-Markovian processes whose transition matrices satisfy the Chapman-Kolmogorov equation. These processes should also satisfy the Kolmogorov consistency conditions, an essential requirement for a process to be classified as a stochastic process. Combining the Kolmogorov consistency conditions with the Chapman-Kolmogorov equation, we derive a necessary condition for positively divisible stochastic processes on a finite sample space. This necessary condition enables a systematic approach to the manipulation of certain Markov processes in order to obtain a positively divisible non-Markovian process. We illustrate this idea by an example and, in addition, analyze a classic example given by Feller in the light of our approach.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Non-Markovian stochastic processes
    Gillespie, DT
    [J]. UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2000, 511 : 49 - 56
  • [2] ACTIVATION RATES FOR NON-MARKOVIAN PROCESSES
    MUNAKATA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (03): : 826 - 829
  • [3] Non-Markovian processes in gene regulation
    Bratsun, DA
    Volfson, DN
    Hasty, J
    Tsimring, LS
    [J]. Noise in Complex Systems and Stochastic Dynamics III, 2005, 5845 : 210 - 219
  • [4] Bidirectional non-Markovian exclusion processes
    Jose, Robin
    Arita, Chikashi
    Santen, Ludger
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (03):
  • [5] Non-Markovian Inverse Hawkes Processes
    Seol, Youngsoo
    [J]. MATHEMATICS, 2022, 10 (09)
  • [6] Simulating non-Markovian stochastic processes
    Boguna, Marian
    Lafuerza, Luis F.
    Toral, Raul
    Angeles Serrano, M.
    [J]. PHYSICAL REVIEW E, 2014, 90 (04)
  • [7] Theory of non-markovian rate processes
    Kim, Ji-Hyun
    Lee, Sangyoub
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (02): : 577 - 584
  • [8] RESONANCE IN NON-MARKOVIAN ACTIVATION PROCESSES
    MUNAKATA, T
    KAWAKATSU, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1985, 74 (02): : 262 - 271
  • [9] DIFFUSION APPROXIMATION OF NON-MARKOVIAN PROCESSES
    NORMAN, MF
    [J]. ANNALS OF PROBABILITY, 1975, 3 (02): : 358 - 364
  • [10] NON-MARKOVIAN PROCESSES WITH THE SEMIGROUP PROPERTY
    FELLER, W
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (04): : 1252 - 1253