Extrapolating in vivo hepatic clearance from in vitro uptake data is a known challenge, especially for organic anion-transporting polypeptide transporter (OATP) substrates, and the well-stirred model (WSM) commonly yields systematic underpredictions for those anionic drugs, hypothetically due to "albumin-mediated hepatic drug uptake". In the present study, we demonstrate that the WSM incorporating the dynamic free fraction (fD), a measure of drug protein binding affinity, performs reasonably well in predicting hepatic clearance of OATP substrates. For a selection of anionic drugs, including atorvastatin, fluvastatin, pravastatin, rosuvastatin, pitavastatin, cerivastatin, and repaglinide, this dynamic well-stirred model (dWSM) correctly predicts hepatic plasma clearance within 2-fold error for six out of seven OATP substrates examined. The geometric mean of clearance ratios between the predicted and the observed values falls in the range of 1.21-1.38. As expected, the WSM with unbound fraction (fu) systematically underpredicts hepatic clearance with greater than 2-fold error for five out of seven drugs, and the geometric mean of clearance ratios between the predicted and the observed values is in the range of 0.20-0.29. The results suggest that, despite its simplicity, the dWSM operates well for transporter -mediated uptake clearance, and that clearance under - prediction of OATP substrates may not necessarily be associated with the chemical class of the anionic drugs, nor is it a result of al- bumin -mediated hepatic drug uptake as currently hypothesized. In- stead, the superior prediction power of the dWSM confirms the utility of the dynamic free fraction in clearance prediction and the importance of drug plasma binding kinetics in hepatic uptake clearance.