Transfinite Milnor invariants for 3-manifolds

被引:0
|
作者
Cha, Jae Choon [1 ]
Orr, Kent E. [2 ]
机构
[1] Pohang Univ Sci & Technol, Ctr Res Topol, Pohang 37673, South Korea
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Transfinite Milnor invariants; 3-manifolds; homology cobordism; transfinite lower central series; ALGEBRAIC CLOSURE; LINK CONCORDANCE; HOMOLOGY; HOMOTOPY; LOCALIZATION; FILTRATION;
D O I
10.4171/JEMS/1328
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In his 1957 paper, John Milnor introduced link invariants which measure the homotopy class of the longitudes of a link relative to the lower central series of the link group. Consequently, these invariants determine the lower central series quotients of the link group. This work has driven decades of research with profound influence. One of Milnor's original problems remained unsolved: to extract similar invariants from the transfinite lower central series of the link group. We reformulate and extend Milnor's invariants in the broader setting of 3-manifolds, with his original invariants as special cases. We present a solution to Milnor's problem for general 3-manifold groups, developing a theory of transfinite invariants and realizing nontrivial values.
引用
收藏
页码:2971 / 3046
页数:76
相关论文
共 50 条
  • [1] The effect of mutation on link concordance, 3-manifolds, and the Milnor invariants
    Cha, JC
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2006, 15 (02) : 239 - 257
  • [2] INVARIANTS OF 3-MANIFOLDS
    CAPPELL, SE
    SHANESON, JL
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (03): : 559 - 562
  • [3] Milnor open books and Milnor fillable contact 3-manifolds
    Caubel, C
    Némethi, A
    Popescu-Pampu, P
    [J]. TOPOLOGY, 2006, 45 (03) : 673 - 689
  • [4] BRAIDS AND INVARIANTS OF 3-MANIFOLDS
    WENZL, H
    [J]. INVENTIONES MATHEMATICAE, 1993, 114 (02) : 235 - 275
  • [5] GEOMETRIC INVARIANTS FOR 3-MANIFOLDS
    MEYERHOFF, R
    [J]. MATHEMATICAL INTELLIGENCER, 1992, 14 (01): : 37 - 53
  • [6] Integral invariants of 3-manifolds
    Bott, R
    Cattaneo, AS
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1998, 48 (01) : 91 - 133
  • [7] On some invariants of 3-manifolds
    Ohtsuki, T
    [J]. GEOMETRY AND PHYSICS, 1997, 184 : 411 - 427
  • [8] The θP invariants of periodic 3-manifolds
    Chbili, N
    [J]. ANNALES DE L INSTITUT FOURIER, 2001, 51 (04) : 1135 - 1150
  • [9] On small geometric invariants of 3-manifolds
    Kapitza, Paul J.
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2011, 17 : 383 - 435
  • [10] Categorical group invariants of 3-manifolds
    J. C. Gómez-Larrañaga
    F. González-Acuña
    Wolfgang Heil
    [J]. Manuscripta Mathematica, 2014, 145 : 433 - 448