Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

被引:0
|
作者
Phi, Francis G. [1 ]
Cho, Bumsu [2 ]
Kim, Jungeun [2 ]
Cho, Hyungik [3 ]
Choo, Yun Wook [1 ]
Kim, Dookie [1 ]
Kim, Inhi [4 ]
机构
[1] Kongju Natl Univ, Dept Civil & Environm Engn, 1223-24 Cheonan-daero, Cheonan Si, Chungcheongnam, South Korea
[2] Kongju Natl Univ, Dept Comp Sci & Engn, 1223-24 Cheonan-daero, Cheonan Si, Chungcheongnam, South Korea
[3] Andong Natl Univ, Dept Civil Syst Engn, 1375 Gyeongdong-ro, Andong 36729, Gyeongsangbug D, South Korea
[4] Korea Adv Inst Sci & Technol, Cho Chun Shik Grad Sch Mobil, 193 Munji-ro, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
earthquake; machine learning; seismic design; site characterization; site classification prediction; SOIL-STRUCTURE INTERACTION; STATIONS; H/V; AMPLIFICATION; TAIWAN;
D O I
10.12989/gae.2024.37.6.539
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over -sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.
引用
下载
收藏
页码:539 / 554
页数:16
相关论文
共 50 条
  • [1] Assessment of seismic vulnerability using the horizontal-to-vertical spectral ratio (HVSR) method in Haenam, Korea
    Kang, Su Young
    Kim, Kwang-Hee
    Kim, Byungmin
    GEOSCIENCES JOURNAL, 2021, 25 (01) : 71 - 81
  • [2] Assessment of seismic vulnerability using the horizontal-to-vertical spectral ratio (HVSR) method in Haenam, Korea
    Su Young Kang
    Kwang-Hee Kim
    Byungmin Kim
    Geosciences Journal, 2021, 25 : 71 - 81
  • [3] The improvement of the earthquake and microseismic Horizontal-to-Vertical Spectral Ratio (HVSR) in estimating site effects
    Sarmadi, Mohammad Ali
    Heidari, Reza
    Mirzaei, Noorbakhsh
    Siahkoohi, Hamid Reza
    ACTA GEOPHYSICA, 2021, 69 (04) : 1177 - 1188
  • [4] The improvement of the earthquake and microseismic Horizontal-to-Vertical Spectral Ratio (HVSR) in estimating site effects
    Mohammad Ali Sarmadi
    Reza Heidari
    Noorbakhsh Mirzaei
    Hamid Reza Siahkoohi
    Acta Geophysica, 2021, 69 : 1177 - 1188
  • [5] Investigation of Site Condition Using Elliptical Curve Inversion from Horizontal-to-Vertical Spectral Ratio (HVSR)
    Arimuko, A.
    Santoso, E.
    Sunardi, B.
    SEMINAR NASIONAL FISIKA (SNF) UNESA 2019, 2020, 1491
  • [6] EVALUATION OF PASSIVE SEISMIC HORIZONTAL-TO-VERTICAL SPECTRAL RATIO (HVSR) FOR RAPID SITE-SPECIFIC LIQUEFACTION HAZARD ASSESSMENT
    Aque, L. E. G.
    Daag, A. S.
    Grutas, R. N.
    Abigania, M. I. T.
    Dizon, M. P.
    Buhay, D. J. L.
    Mitiam, E. D.
    Serrano, A. T.
    Halasan, O. P. C.
    Reyes, M. J. V.
    Sochayseng, K. S.
    Magnaye, A. A. T.
    Amandy, A. O.
    Dela Cruz, M. C.
    Locaba, O. S.
    Diwata, S. M. A.
    Solidum, R. U., Jr.
    Alarcon, W. D.
    Sarmiento, N. R. P.
    Macaraeg, E. A., Jr.
    18TH ANNUAL MEETING OF THE ASIA OCEANIA GEOSCIENCES SOCIETY, AOGS 2021, 2022, : 132 - 134
  • [7] GROUND MOTION PREDICTION MODEL FOR SOUTHEASTERN MEXICO REMOVING SITE EFFECTS USING THE EARTHQUAKE HORIZONTAL-TO-VERTICAL SPECTRAL RATIO (EHVSR)
    Lermo-Samaniego, Javier F.
    Jaimes, Miguel A.
    Sanchez-Sesma, Francisco J.
    Campuzano-Sanchez, Cristian
    Cruz-Jimenez, Hugo
    Campos-Enriquez, Jose Oscar
    GEOFISICA INTERNACIONAL, 2020, 59 (04): : 255 - 272
  • [8] Horizontal-to-Vertical Spectral Ratio (HVSR) Analysis of the Martian Passive Seismic Data from the InSight Mission
    Mahvelati, Siavash
    Coe, Joseph Thomas
    EARTH AND SPACE 2021: SPACE EXPLORATION, UTILIZATION, ENGINEERING, AND CONSTRUCTION IN EXTREME ENVIRONMENTS, 2021, : 108 - 115
  • [9] Site classification of Pondicherry using shear-wave velocity and horizontal-to-vertical spectral ratio
    Trupti, S.
    Goverdhan, K.
    Srinivas, K. N. S. S. S.
    Prasad, P. Prabhakar
    Seshunarayana, T.
    NATURAL HAZARDS, 2013, 69 (01) : 953 - 964
  • [10] Site classification of Pondicherry using shear-wave velocity and horizontal-to-vertical spectral ratio
    S. Trupti
    K. Goverdhan
    K. N. S. S. S. Srinivas
    P. Prabhakar Prasad
    T. Seshunarayana
    Natural Hazards, 2013, 69 : 953 - 964