End-to-end learning of convolutional neural net and dynamic programming for left ventricle segmentation

被引:0
|
作者
Nguyen, Nhat M. [1 ]
Ray, Nilanjan [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, 2-21 Athabasca Hall, Edmonton, AB T6G 2E8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Differentiable programming; End-to-end learning; DEEP; NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differentiable programming is able to combine different functions or modules in a data processing pipeline with the goal of applying gradient descent-based end-to-end learning or optimization. A significant impediment to differentiable programming is the non-differentiable nature of some functions. We propose to overcome this difficulty by using neural networks to approximate such modules. An approximating neural network provides synthetic gradients (SG) for backpropagation across a non-differentiable module. Our design is grounded on a well-known theory that gradient of an approximating neural network can approximate a sub-gradient of a weakly differentiable function. We apply SG to combine convolutional neural network (CNN) with dynamic programming (DP) in end-to-end learning for segmenting left ventricle from short axis view of heart MRI. Our experiments show that end-to-end combination of CNN and DP requires fewer labeled images to achieve a significantly better segmentation accuracy than using only CNN.
引用
下载
收藏
页码:555 / 569
页数:15
相关论文
共 50 条
  • [1] Leukocyte Segmentation via End-to-End Learning of Deep Convolutional Neural Networks
    Lu, Yan
    Fan, Haoyi
    Li, Zuoyong
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 191 - 200
  • [2] Handwritten Text Segmentation via End-to-End Learning of Convolutional Neural Networks
    Junho Jo
    Hyung Il Koo
    Jae Woong Soh
    Nam Ik Cho
    Multimedia Tools and Applications, 2020, 79 : 32137 - 32150
  • [3] Handwritten Text Segmentation via End-to-End Learning of Convolutional Neural Networks
    Jo, Junho
    Koo, Hyung Il
    Soh, Jae Woong
    Cho, Nam Ik
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32137 - 32150
  • [4] End-to-End Automated Iris Segmentation Framework Using U-Net Convolutional Neural Network
    Chai, Tong-Yuen
    Goi, Bok-Min
    Hong, Ye-Yi
    INFORMATION SCIENCE AND APPLICATIONS, 2020, 621 : 259 - 267
  • [5] LEARNING ENVIRONMENTAL SOUNDS WITH END-TO-END CONVOLUTIONAL NEURAL NETWORK
    Tokozume, Yuji
    Harada, Tatsuya
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2721 - 2725
  • [6] Automatic segmentation of left ventricle using parallel end-end deep convolutional neural networks framework
    Dong, Zhangfu
    Du, Xiuquan
    Liu, Yueguo
    KNOWLEDGE-BASED SYSTEMS, 2020, 204 (204)
  • [7] Neural Dynamic Policies for End-to-End Sensorimotor Learning
    Bahl, Shikhar
    Mukadam, Mustafa
    Gupta, Abhinav
    Pathak, Deepak
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [8] Convolutional Dictionary Learning by End-To-End Training of Iterative Neural Networks
    Kofler, Andreas
    Wald, Christian
    Schaeffter, Tobias
    Haltmeier, Markus
    Kolbitsch, Christoph
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1213 - 1217
  • [9] CONVOLUTIONAL ANALYSIS OPERATOR LEARNING BY END-TO-END TRAINING OF ITERATIVE NEURAL NETWORKS
    Kofler, Andreas
    Wald, Christian
    Schaeffter, Tobias
    Haltmeier, Markus
    Kolbitsch, Christoph
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [10] End-to-end Learning Approach for Autonomous Driving: A Convolutional Neural Network Model
    Wang, Yaqin
    Liu, Dongfang
    Jeon, Hyewon
    Chu, Zhiwei
    Matson, Eric T.
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 833 - 839