EGANS: Evolutionary Generative Adversarial Network Search for Zero-Shot Learning

被引:7
|
作者
Chen, Shiming [1 ]
Chen, Shuhuang [1 ]
Hou, Wenjin [1 ]
Ding, Weiping [2 ]
You, Xinge [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[2] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer architecture; Generators; Generative adversarial networks; Visualization; Training; Semantics; Optimization; Evolutionary neural architecture search (ENAS); generative adversarial networks (GANs); zero-shot learning (ZSL); ARCHITECTURE SEARCH; NEURAL-NETWORKS;
D O I
10.1109/TEVC.2023.3307245
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot learning (ZSL) aims to recognize the novel classes which cannot be collected for training a prediction model. Accordingly, generative models [e.g., generative adversarial network (GAN)] are typically used to synthesize the visual samples conditioned by the class semantic vectors and achieve remarkable progress for ZSL. However, existing GAN-based generative ZSL methods are based on hand-crafted models, which cannot adapt to various datasets/scenarios and fails to model instability. To alleviate these challenges, we propose evolutionary GAN search (termed EGANS) to automatically design the generative network with good adaptation and stability, enabling reliable visual feature sample synthesis for advancing ZSL. Specifically, we adopt cooperative dual evolution to conduct a neural architecture search (NAS) for both generator and discriminator under a unified evolutionary adversarial framework. EGANS is learned by two stages: 1) evolution generator architecture search and 2) evolution discriminator architecture search. During the evolution generator architecture search, we adopt a many-to-one adversarial training strategy to evolutionarily search for the optimal generator. Then the optimal generator is further applied to search for the optimal discriminator in the evolution discriminator architecture search with a similar evolution search algorithm. Once the optimal generator and discriminator are searched, we entail them into various generative ZSL baselines for ZSL classification. Extensive experiments show that EGANS consistently improve existing generative ZSL methods on the standard CUB, SUN, AWA2 and FLO datasets. The significant performance gains indicate that the evolutionary NAS explores a virgin field in ZSL.
引用
收藏
页码:582 / 596
页数:15
相关论文
共 50 条
  • [1] Generative Dual Adversarial Network for Generalized Zero-shot Learning
    Huang, He
    Wang, Changhu
    Yu, Philip S.
    Wang, Chang-Dong
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 801 - 810
  • [2] ZeroNAS: Differentiable Generative Adversarial Networks Search for Zero-Shot Learning
    Yan, Caixia
    Chang, Xiaojun
    Li, Zhihui
    Guan, Weili
    Ge, Zongyuan
    Zhu, Lei
    Zheng, Qinghua
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9733 - 9740
  • [3] Multi-modal generative adversarial network for zero-shot learning
    Ji, Zhong
    Chen, Kexin
    Wang, Junyue
    Yu, Yunlong
    Zhang, Zhongfei
    KNOWLEDGE-BASED SYSTEMS, 2020, 197
  • [4] A generative adversarial network with “zero-shot” learning for positron image denoising
    Mingwei Zhu
    Min Zhao
    Min Yao
    Ruipeng Guo
    Scientific Reports, 13
  • [5] A generative adversarial network with "zero-shot" learning for positron image denoising
    Zhu, Mingwei
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Zero-Shot Learning with Joint Generative Adversarial Networks
    Zhang, Minwan
    Wang, Xiaohua
    Shi, Yueting
    Ren, Shiwei
    Wang, Weijiang
    ELECTRONICS, 2023, 12 (10)
  • [7] Zero-Shot Learning via Structure-Aligned Generative Adversarial Network
    Tang, Chenwei
    He, Zhenan
    Li, Yunxia
    Lv, Jiancheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6749 - 6762
  • [8] Zero-shot image classification based on generative adversarial network
    Wei H.
    Zhang Y.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (12): : 2345 - 2350
  • [9] A Generative Framework for Zero-Shot Learning with Adversarial Domain Adaptation
    Khare, Varun
    Mahajan, Divyat
    Bharadhwaj, Homanga
    Verma, Vinay Kumar
    Rai, Piyush
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 3090 - 3099
  • [10] Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs
    Qin, Pengda
    Wang, Xin
    Chen, Wenhu
    Zhang, Chunyun
    Xu, Weiran
    Wang, William Yang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 8673 - 8680