Cross-Domain Distribution Calibration of Hyperspectral Image Classification

被引:0
|
作者
Ding, Junyuan [1 ]
Wei, Wei [1 ]
Zhang, Lei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Shaanxi Prov Key Lab Speech & Image Informat Proc, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-domain; few-shot learning; hyperspectral image (HSI) classification; NETWORK;
D O I
10.1109/LGRS.2023.3347597
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Due to the huge number of trainable parameters, deep learning-based hyperspectral image (HSI) classification method frequently struggle to achieve satisfactory accuracy when providing small amount of labeled training samples. This study proposes a novel few-shot transfer learning-based HSI classification method, which can exploit samples from multiple other HSI datasets (termed as multisource domain) to address the issues of limited labeled samples in target domain. For this purpose, we first construct a feature extractor utilizing both convolution neural network (CNN) and transformer. Specifically, CNN extracts features of HSI in spatial domain, while transformer is used to capture both global and local features within spectral domain. Since the constructed feature extractor is trained on multiple HSIs from source domain, it has a good generalization ability. Then, we propose to utilize the distribution calibration to decrease the difference between the features of the source domain and the target domain. By selecting samples with similar distribution with the target domain from the multisource domain for distribution calibration, the generalization ability of the proposed method for the target domain classification HSI is further enhanced. Experimental results demonstrate the proposed method has better HSI classification results compared with other competing methods.
引用
收藏
页码:1 / 1
页数:5
相关论文
共 50 条
  • [1] CROSS-DOMAIN CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Lee, Hyungtae
    Eum, Sungmin
    Kwon, Heesung
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3627 - 3630
  • [2] CROSS-DOMAIN ATTENTION NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Chenglong
    Ye, Minchao
    Lei, Ling
    Xiong, Fengchao
    Qian, Yuntao
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1564 - 1567
  • [3] CROSS-DOMAIN HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON TRANSFORMER
    Ling, Jiawei
    Ye, Minchao
    Qian, Yuntao
    Qian, Qipeng
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7629 - 7632
  • [4] Cross-Domain Contrastive Learning for Hyperspectral Image Classification
    Guan, Peiyan
    Lam, Edmund Y.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Coarse-to-Fine Joint Distribution Alignment for Cross-Domain Hyperspectral Image Classification
    Miao, Jiajia
    Zhang, Bo
    Wang, Bin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 12415 - 12428
  • [6] Exploring Cross-Domain Pretrained Model for Hyperspectral Image Classification
    Lee, Hyungtae
    Eum, Sungmin
    Kwon, Heesung
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] CROSS-DOMAIN HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON GRAPH CONVOLUTIONAL NETWORKS
    Li, Yushan
    Ye, Minchao
    Qian, Yuntao
    Qian, Qipeng
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5974 - 5977
  • [8] Discriminative Vision Transformer for Heterogeneous Cross-Domain Hyperspectral Image Classification
    Ye, Minchao
    Ling, Jiawei
    Huo, Wanli
    Zhang, Zhaojuan
    Xiong, Fengchao
    Qian, Yuntao
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62
  • [9] Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification
    Li, Zhaokui
    Liu, Ming
    Chen, Yushi
    Xu, Yimin
    Li, Wei
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] FEATURE INTEGRATION-BASED TRAINING FOR CROSS-DOMAIN HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Cheng
    Zhong, Shengwei
    Gong, Chen
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3572 - 3575