Retrosynthesis Prediction with Local Template Retrieval

被引:0
|
作者
Xie, Shufang [1 ]
Yan, Rui [1 ]
Guo, Junliang [2 ]
Xia, Yingce [3 ]
Wu, Lijun [3 ]
Qin, Tao [3 ]
机构
[1] Renmin Univ China, Beijing Key Lab Big Data Management & Anal Method, Gaoling Sch Artificial Intelligence GSAI, Beijing, Peoples R China
[2] Microsoft Res Aisa, Beijing, Peoples R China
[3] Microsoft Res AI4Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retrosynthesis, which predicts the reactants of a given target molecule, is an essential task for drug discovery. In recent years, the machine learing based retrosynthesis methods have achieved promising results. In this work, we introduce RetroKNN, a local reaction template retrieval method to further boost the performance of template-based systems with non-parametric retrieval. We first build an atom-template store and a bond-template store that contain the local templates in the training data, then retrieve from these templates with a k-nearest-neighbor (KNN) search during inference. The retrieved templates are combined with neural network predictions as the final output. Furthermore, we propose a lightweight adapter to adjust the weights when combing neural network and KNN predictions conditioned on the hidden representation and the retrieved templates. We conduct comprehensive experiments on two widely used benchmarks, the USPTO-50K and USPTO-MIT. Especially for the top-1 accuracy, we improved 7.1% on the USPTO-50K dataset and 12.0% on the USPTO-MIT dataset. These results demonstrate the effectiveness of our method.
引用
收藏
页码:5330 / 5338
页数:9
相关论文
共 50 条
  • [1] RetroComposer: Composing Templates for Template-Based Retrosynthesis Prediction
    Yan, Chaochao
    Zhao, Peilin
    Lu, Chan
    Yu, Yang
    Huang, Junzhou
    [J]. BIOMOLECULES, 2022, 12 (09)
  • [2] Influence of Template Size, Canonicalization, and Exclusivity for Retrosynthesis and Reaction Prediction Applications
    Heid, Esther
    Liu, Jiannan
    Aude, Andrea
    Green, William H.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (01) : 16 - 26
  • [3] Ualign: pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment
    Zeng, Kaipeng
    Yang, Bo
    Zhao, Xin
    Zhang, Yu
    Nie, Fan
    Yang, Xiaokang
    Jin, Yaohui
    Xu, Yanyan
    [J]. JOURNAL OF CHEMINFORMATICS, 2024, 16 (01):
  • [4] Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction
    Tu, Zhengkai
    Coley, Connor W.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (15) : 3503 - 3513
  • [5] Artificial Intelligence for Retrosynthesis Prediction
    Jiang, Yinjie
    Yu, Yemin
    Kong, Ming
    Mei, Yu
    Yuan, Luotian
    Huang, Zhengxing
    Kuang, Kun
    Wang, Zhihua
    Yao, Huaxiu
    Zou, James
    Coley, Connor W.
    Wei, Ying
    [J]. ENGINEERING, 2023, 25 : 32 - 50
  • [6] Learning Graph Models for Retrosynthesis Prediction
    Somnath, Vignesh Ram
    Bunne, Charlotte
    Coley, Connor W.
    Krause, Andreas
    Barzilay, Regina
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [7] A multi-stream network for retrosynthesis prediction
    Zhang, Qiang
    Liu, Juan
    Zhang, Wen
    Yang, Feng
    Yang, Zhihui
    Zhang, Xiaolei
    [J]. FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (02)
  • [8] Molecular graph enhanced transformer for retrosynthesis prediction
    Mao, Kelong
    Xiao, Xi
    Xu, Tingyang
    Rong, Yu
    Huang, Junzhou
    Zhao, Peilin
    [J]. NEUROCOMPUTING, 2021, 457 : 193 - 202
  • [9] Retrosynthesis prediction with an iterative string editing model
    Han, Yuqiang
    Xu, Xiaoyang
    Hsieh, Chang-Yu
    Ding, Keyan
    Xu, Hongxia
    Xu, Renjun
    Hou, Tingjun
    Zhang, Qiang
    Chen, Huajun
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] A multi-stream network for retrosynthesis prediction
    Qiang Zhang
    Juan Liu
    Wen Zhang
    Feng Yang
    Zhihui Yang
    Xiaolei Zhang
    [J]. Frontiers of Computer Science, 2024, 18