NUMERICAL ANALYSIS AND PARAMETRIC STUDY OF A THERMOELECTRIC-BASED RADIANT CEILING PANEL FOR BUILDING COOLING APPLICATIONS

被引:0
|
作者
Seyednezhad, Mohadeseh [1 ]
Najafi, Hamidreza [1 ]
机构
[1] Florida Inst Technol, Dept Mech & Civil Engn, Melbourne, FL 32901 USA
关键词
Building energy; Phase change material (PCM); thermoelectric cooling; ceiling panel; HEAT-PUMP; SYSTEM; PERFORMANCE; PCM; FIELD; WALL; VENTILATION; MODEL;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Buildings are known as one of the foremost energy consumer sectors in the world with a share of nearly 40% and hence the design and development of clean and energy efficient building energy systems is an important step towards a sustainable future. Cooling and air conditioning systems, as an essential component for occupants' comfort, are among the largest energy end-users in buildings. Additionally, most air conditioning systems rely on using refrigerants that are harmful for the environment with considerable potential for ozone depletion and global warming. Solid-state cooling technologies that do not require refrigerant are therefore of interest to eliminate these environmental concerns. Thermoelectric (TE) modules, as a solid-state cooling technology, when supplied by DC electricity, produce a temperature gradient through the Peltier effect that can be used for cooling purposes. Due to the attractive characteristics that TE technology offers, mainly high controllability, lack of refrigerant and large moving parts, quiet operation, promising efficiency and requiring minimum maintenance required, TE-based systems are becoming an emerging technology for building cooling applications. TEbased cooling technologies have been developed and tested through integrated and non-integrated systems in the building envelope. In the present paper, the design of a TE-based radiant cooling ceiling panel is investigated through numerical modeling and parametric study. The system can be incorporated in the ceiling and will maintain a reduced ceiling temperature to provide cooling through radiation and convection for the occupants. COMSOL Multiphysics is used for modeling and simulation purposes and the performance of the system under various configurations is assessed. The effect of number and placement of TE modules for a given size of ceiling panel are investigated using several simulations in COMSOL to achieve a desired and uniform surface temperature in the minimum amount of time. The impact of incorporating various amounts of phase change material (PCM) in the ceiling panel is also assessed. PCM allows the ceiling panel to maintain the desired temperature for an extended amount of time, but it also increases the time that it takes for the panel to reach the desired temperature. Transient thermal simulations are performed for both start up and shut down scenarios and the amount of time that it takes for the ceiling temperature to cool down to the desired level (on-mode) or heat up (off-mode) to the temperature at which it has to turn back on again are calculated for various system configurations. The results from this study can be used for optimal design of TE-based radiant cooling ceiling panels to achieve high energy efficiency and low operating cost while maintaining occupants' comfort in the buildings.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Numerical and Experimental Investigation of a Thermoelectric-Based Radiant Ceiling Panel with Phase Change Material for Building Cooling Applications
    Seyednezhad, Mohadeseh
    Najafi, Hamidreza
    Kubwimana, Benjamin
    [J]. SUSTAINABILITY, 2021, 13 (21)
  • [2] Solar-Powered Thermoelectric-Based Cooling and Heating System for Building Applications: A Parametric Study
    Seyednezhad, Mohadeseh
    Najafi, Hamidreza
    [J]. ENERGIES, 2021, 14 (17)
  • [3] Thermoelectric-Based Radiant Cooling Systems: An Experimental and Numerical Investigation of Thermal Comfort
    Kubwimana, Benjamin
    Seyednezhad, Mohadeseh
    Najafi, Hamidreza
    [J]. ENERGIES, 2023, 16 (19)
  • [4] Numerical and Parametric Study on Open-Type Ceiling Radiant Cooling Panel with Curved and Segmented Structure
    Ye, Minzhi
    Serageldin, Ahmed A.
    Nagano, Katsunori
    [J]. ENERGIES, 2023, 16 (06)
  • [5] The optimization design and parametric study of thermoelectric radiant cooling and heating panel
    Shen, Limei
    Tu, Zhilong
    Hu, Qiang
    Tao, Cheng
    Chen, Huanxin
    [J]. APPLIED THERMAL ENGINEERING, 2017, 112 : 688 - 697
  • [6] Experimental Study on Cooling Characteristics of Concrete Ceiling Radiant Cooling Panel
    Su, Lin
    Li, Nianping
    Zhang, Xuhan
    [J]. 9TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING (ISHVAC) JOINT WITH THE 3RD INTERNATIONAL CONFERENCE ON BUILDING ENERGY AND ENVIRONMENT (COBEE), 2015, 121 : 2168 - 2175
  • [7] Numerical analysis of temperature non-uniformity and cooling capacity for capillary ceiling radiant cooling panel
    Xie, Dong
    Wang, Yun
    Wang, Hanqing
    Mo, Shunquan
    Liao, Maili
    [J]. RENEWABLE ENERGY, 2016, 87 : 1154 - 1161
  • [8] Experimental Study of Heat Performance on Ceiling Radiant Cooling Panel
    Yuan, Yong-Li
    Zhou, Xiang
    Zhang, Xu
    [J]. 9TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING (ISHVAC) JOINT WITH THE 3RD INTERNATIONAL CONFERENCE ON BUILDING ENERGY AND ENVIRONMENT (COBEE), 2015, 121 : 2176 - 2183
  • [9] Dynamic heat transfer modeling and parametric study of thermoelectric radiant cooling and heating panel system
    Luo, Yongqiang
    Zhang, Ling
    Liu, Zhongbing
    Wang, Yingzi
    Wu, Jing
    Wang, Xiliang
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2016, 124 : 504 - 516
  • [10] Thermoelectric radiant cooling panel design: Numerical simulation and experimental validation
    Lim, Hansol
    Kang, Yong-Kwon
    Jeong, Jae-Weon
    [J]. APPLIED THERMAL ENGINEERING, 2018, 144 : 248 - 261