Impact of Particle Shape on Crushing Behaviour of Rock Particles Using X-ray Micro-CT Testing and DEM Modelling

被引:2
|
作者
Zhao, Xiaolong [1 ,2 ,3 ]
Wu, Yunlong [2 ]
Jia, Yun [2 ]
Bian, Hanbing [4 ]
Bur, Nicolas [2 ]
Zhu, Jungao [3 ]
Colliat, Jean-Baptiste [2 ]
机构
[1] Shandong Agr Univ, Coll Water Conservancy & Civil Engn, Tai An 271018, Peoples R China
[2] Univ Lille, UMR LaMcube Lab Mecan 9013, CNRS, Cent Lille,Multiphys,Multiechelle, F-59000 Lille, France
[3] Hohai Univ, Key Lab Geomech & Embankment Engn, Minist Educ, Nanjing 210098, Peoples R China
[4] Univ Lille, LGCgE Lab Civil Engn & Geoenvironm, ULR 4515, F-59000 Lille, France
基金
中国国家自然科学基金;
关键词
Rock particle; Grain crushing; Particle-scale behaviour; In-situ CT experiment; Discrete element modelling; WEIBULL STATISTICS; COMPRESSION; TOMOGRAPHY; STRENGTH; MICROMECHANICS; FRACTURE; SIMULATIONS; SPHERICITY; GENERATION; MECHANICS;
D O I
10.1007/s00603-024-03916-4
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Particle crushing is a fundamental issue in the analysis of the deformation and failure behaviour of rockfill materials. The impact of morphology on the crushing behaviour of granite particles is investigated via a series of in-situ X-ray micro-CT tests and DEM simulations. Single-particle crushing tests are performed on rock particles of three different sizes. During mechanical loading, four in-situ CT scans are performed on each grain using an innovative loading apparatus. The CT test images reveal that the shape of the particle and its heterogeneous structure are crucial factors in determining failure patterns. Additionally, various shape indexes of rock particles change progressively and tend to stabilize, while their fragments follow a fractal distribution, seemingly independent of their initial size. Based on CT images, numerical particles with realistic shapes and internal flaws are generated using a proposed numerical method. It is observed that an increase in elongation index EI or flatness index FI results in a decrease in characteristic strength sigma 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _0$$\end{document} and an increase in Weibull modulus m. A novel loading apparatus has been developed for the realization of in-situ mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}CT scans during single-particle crushing tests.CT test images reveal that particle shape and its heterogeneous structure are crucial factors in determining the failure pattern of rockfill particles.A new numerical method is proposed for generating particles, including both particle shape and microstructure.For particle shape, increasing the elongation index and flatness index of particle results in a decrease in characteristic strength sigma 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _0$$\end{document} and an increase in Weibull modulus .
引用
收藏
页码:7813 / 7834
页数:22
相关论文
共 50 条
  • [1] In-situ X-ray micro-CT quantitative analysis and modelling the damage evolution in granite rock
    Hu, Qinxin
    Yang, Shangtong
    Xi, Xun
    Shipton, Zoe K.
    Minto, James
    Hu, Xiaofei
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 133
  • [2] Assessing the carbon sequestration potential of basalt using X-ray micro-CT and rock mechanics
    Callow, Ben
    Falcon-Suarez, Ismael
    Ahmed, Sharif
    Matter, Juerg
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2018, 70 : 146 - 156
  • [3] Imaging of metallic foams using X-ray micro-CT
    Saadatfar, M.
    Garcia-Moreno, F.
    Hutzler, S.
    Sheppard, A. P.
    Knackstedt, M. A.
    Banhart, J.
    Weaire, D.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 344 (1-3) : 107 - 112
  • [4] X-ray Micro-CT based characterization of rock cuttings with deep learning
    Olsen, Nils
    Chen, Yifeng
    Turberg, Pascal
    Moreau, Alexandre
    Alahi, Alexandre
    APPLIED COMPUTING AND GEOSCIENCES, 2025, 25
  • [5] Desktop x-ray micro-CT instruments
    Sasov, A
    DEVELOPMENTS IN X-RAY TOMOGRAPHY III, 2002, 4503 : 282 - 290
  • [6] Evaluation of particle crushing in soils using X-ray CT data
    Otani, J
    Mukunoki, T
    Sugawara, K
    SOILS AND FOUNDATIONS, 2005, 45 (01) : 99 - 108
  • [7] Virtual characterisation of porcupine quills using X-ray micro-CT
    Tee, Yun Lu
    Black, Jay R.
    Phuong Tran
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)
  • [8] Multiscale characterization of glass wools using X-ray micro-CT
    Meftah, Redouane
    Berger, Sylvain
    Jacqus, Gary
    Laluet, Jean-Yves
    Cnudde, Veerle
    MATERIALS CHARACTERIZATION, 2019, 156
  • [9] An experimental micro-CT system for X-ray NDT
    Rossi, M
    Casali, F
    Bettuzzi, M
    Morigi, MP
    Romani, A
    Golovkin, SV
    Govorun, VN
    DEVELOPMENTS IN X-RAY TOMOGRAPHY III, 2002, 4503 : 338 - 348
  • [10] X-ray micro-CT with a displaced detector array
    Wang, G
    MEDICAL PHYSICS, 2002, 29 (07) : 1634 - 1636