A Note on the Codegree of Finite Groups

被引:0
|
作者
Lewis, Mark L. [1 ]
Yan, Quanfu [1 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Character codegrees; Codegree sum; Nonsolvable groups; ELEMENT ORDERS; CHARACTER; SUMS;
D O I
10.1007/s10468-024-10282-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} be an irreducible character of a group G, and Sc(G)=& sum;chi is an element of Irr(G)cod(chi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_c(G)=\sum _{\chi \in \textrm{Irr}(G)}\textrm{cod}(\chi )$$\end{document} be the sum of the codegrees of the irreducible characters of G. Write fcod(G)=Sc(G)|G|.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{fcod} (G)=\frac{S_c(G)}{|G|}.$$\end{document} We aim to explore the structure of finite groups in terms of fcod(G).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{fcod} (G).$$\end{document} On the other hand, we determine the lower bound of Sc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_c(G)$$\end{document} for nonsolvable groups and prove that if G is nonsolvable, then Sc(G)>= Sc(A5)=68,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_c(G)\geqslant S_c(A_5)=68,$$\end{document} with equality if and only if G congruent to A5.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cong A_5.$$\end{document} Additionally, we show that there is a solvable group so that it has the codegree sum as A5.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_5.$$\end{document}
引用
收藏
页码:1799 / 1804
页数:6
相关论文
共 50 条
  • [1] The codegree isomorphism problem for finite simple groups
    Hung, Nguyen N.
    Moreto, Alexander
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (03): : 1157 - 1179
  • [2] The codegree isomorphism problem for finite simple groups II
    Hung, Nguyen N.
    Moreto, Alexander
    QUARTERLY JOURNAL OF MATHEMATICS, 2025, 76 (01): : 237 - 250
  • [3] Finite groups with non-complete character codegree graphs
    Qian, Guohua
    JOURNAL OF ALGEBRA, 2025, 669 : 75 - 94
  • [4] Finite groups in which all nonlinear irreducible characters have the same codegree
    Qian, Guohua
    Zeng, Yu
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (03) : 1293 - 1297
  • [5] On the largest character codegree of a finite group
    Liu, Yang
    Shang, Tiantian
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2024, 134 (02):
  • [6] On the average codegree of a finite group
    Wang, Zhongbi
    Qian, Guohua
    Lv, Heng
    Chen, Guiyun
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023,
  • [7] CODEGREE OF SIMPLE LIE-GROUPS
    OSHIMA, H
    OSAKA JOURNAL OF MATHEMATICS, 1989, 26 (04) : 759 - 773
  • [8] A NOTE ON FINITE ABELIAN GROUPS
    PAIGE, LJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 49 - 49
  • [9] A note on the localization of finite groups
    Libman, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 148 (03) : 271 - 274
  • [10] A Note on Finite Nilpotent Groups
    Werner, Nicholas J.
    AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (09): : 803 - 805