An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions

被引:0
|
作者
Wei, Jiao [1 ]
Geng, Xianguo [1 ]
Wang, Xin [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Zhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R China
基金
中国国家自然科学基金;
关键词
Darboux transformation; soliton solutions; generalized Fokas-Lenells equation; 02.30.Jr; 02.30.Ik; ROGUE WAVES;
D O I
10.1088/1674-1056/ad4633
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Under investigation is an integrable generalization of the Fokas-Lenells equation, which can be derived from the negative power flow of a 2 x 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas-Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas-Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly, the explicit one- and two-soliton solutions are presented and their dynamical behaviors are shown graphically.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] An integrable generalization of the Fokas–Lenells equation:Darboux transformation, reduction and explicit soliton solutions
    魏姣
    耿献国
    王鑫
    [J]. Chinese Physics B., 2024, 33 (07) - 135
  • [2] Soliton solutions, Darboux transformation of the variable coefficient nonlocal Fokas-Lenells equation
    Zhang, Xi
    Wang, Yu-Feng
    Yang, Sheng-Xiong
    [J]. NONLINEAR DYNAMICS, 2024, 112 (04) : 2869 - 2882
  • [3] Fokas-Lenells equation: Three types of Darboux transformation and multi-soliton solutions
    Wang, Yao
    Xiong, Zhi-Jin
    Ling, Liming
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 107
  • [4] On soliton solutions for perturbed Fokas-Lenells equation
    Gomez, Cesar A. S.
    Roshid, Harun-Or
    Inc, Mustafa
    Akinyemi, Lanre
    Rezazadeh, Hadi
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (06)
  • [5] Integrable reduction and solitons of the Fokas-Lenells equation
    Horikis, Theodoros P.
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 86 (04) : 730 - 738
  • [6] SOLITON SOLUTIONS FOR THE (2+1)-DIMENSIONAL INTEGRABLE FOKAS-LENELLS EQUATION
    Zhassybayeva, M. B.
    Yesmakhanova, K. R.
    [J]. NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2019, 6 (328): : 138 - 145
  • [7] Darboux transformation and exact solutions for a four-component Fokas-Lenells equation
    Li, Yihao
    Geng, Xianguo
    Xue, Bo
    Li, Ruomeng
    [J]. RESULTS IN PHYSICS, 2021, 31
  • [8] DARBOUX TRANSFORMATION, EXACT SOLUTIONS OF THE VARIABLE COEFFICIENT NONLOCAL FOKAS-LENELLS EQUATION
    Zhang, Feng
    Hu, Yuru
    Xin, Xiangpeng
    Liu, Hanze
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (04): : 1544 - 1557
  • [9] Optical soliton solutions of the perturbed Fokas-Lenells equation
    Xu, Wan-Rong
    Bi, Hui
    [J]. OPTIK, 2023, 272
  • [10] General soliton solutions to a coupled Fokas-Lenells equation
    Ling, Liming
    Feng, Bao-Feng
    Zhu, Zuonong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 40 : 185 - 214