In industrial processes, quality variable prediction is important for process control and monitoring. Deep learning (DL) methods offer excellent prediction performance and potential paradigm shifts in quality variable modeling. However, in real -world production, the lack of offline labeled data and time -varying data distributions commonly exist, which seriously prohibits practical applications of DL -based predictive models. This paper introduces an enhanced quality variable prediction framework, Transfer -Incremental -Learning Parallel Stacked Autoencoders (TIL-PSAE), to address this challenge. TIL-PSAE integrates three key components: a parallel model structure, a transfer -learning (TL) -based offline training strategy that accumulates knowledge from multiple similar but different processes, and an incremental -learning (IL) -based online adaptation strategy. The model structure comprises two parallel SAEs for extracting process -invariant and target -process -specific features. Offline training involves sequential training using data from different processes, facilitating knowledge accumulation into different parts of model. During online adaptation, the accumulated knowledge remains unchanged while a new combination of knowledge is learned, thus improving online prediction accuracy and avoiding knowledge forgetting. The proposed model is applied to a sulfur recovery unit with four parallel sub -units. Experimental results demonstrate the effectiveness of the proposed model in both offline and online prediction performance.
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
State Key Lab Proc Automat Min & Met, Beijing 100160, Peoples R China
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100080, Peoples R China
Xuzhou Key Lab Artificial Intelligence & Big Data, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Chu, Fei
Liang, Tao
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Liang, Tao
论文数: 引用数:
h-index:
机构:
Chen, C. L. Philip
Wang, Xuesong
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Xuzhou Key Lab Artificial Intelligence & Big Data, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
Wang, Xuesong
Ma, Xiaoping
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
机构:
CSIR Cent Electrochem Res Inst CECRI, Acad Sci & Innovat Res AcSIR, Karaikkudi 630003, Tamil Nadu, IndiaCSIR Cent Electrochem Res Inst CECRI, Acad Sci & Innovat Res AcSIR, Karaikkudi 630003, Tamil Nadu, India
Selvaraj, Hosimin
Chandrasekaran, Karthikeyan
论文数: 0引用数: 0
h-index: 0
机构:CSIR Cent Electrochem Res Inst CECRI, Acad Sci & Innovat Res AcSIR, Karaikkudi 630003, Tamil Nadu, India
Chandrasekaran, Karthikeyan
Murugan, Raja
论文数: 0引用数: 0
h-index: 0
机构:CSIR Cent Electrochem Res Inst CECRI, Acad Sci & Innovat Res AcSIR, Karaikkudi 630003, Tamil Nadu, India
Murugan, Raja
Sundaram, Maruthamuthu
论文数: 0引用数: 0
h-index: 0
机构:CSIR Cent Electrochem Res Inst CECRI, Acad Sci & Innovat Res AcSIR, Karaikkudi 630003, Tamil Nadu, India