Defect-Engineered Metal-Organic Frameworks as Nanocarriers for Pharmacotherapy: Insights into Intracellular Dynamics at The Single Particle Level

被引:1
|
作者
Huang, Ge [1 ,2 ,3 ,4 ,5 ]
Dreisler, Marcus Winther [1 ,2 ,3 ,4 ,5 ]
Kaestel-Hansen, Jacob [1 ,2 ,3 ,4 ,5 ]
Nielsen, Annette Juma [1 ,2 ,3 ,6 ,7 ]
Zhang, Min [1 ,2 ,3 ,4 ,5 ]
Hatzakis, Nikos S. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Copenhagen, Dept Chem, Thorvaldsensvej 40, DK-1871 Copenhagen, Denmark
[2] Univ Copenhagen, Nanosci Ctr, Thorvaldsensvej 40, DK-1871 Copenhagen, Denmark
[3] Univ Copenhagen, Ctr 4D Cellular Dynam, Copenhagen, Denmark
[4] Univ Copenhagen, Novo Nordisk Ctr Optimised Oligo Escape & Control, DK-2000 Copenhagen, Denmark
[5] Univ Copenhagen, Novo Nordisk Fdn Ctr Prot Res, Fac Hlth & Med Sci, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
[6] Univ Copenhagen, Dept Biol, Struct Biol & NMR Lab, DK-2200 Copenhagen, Denmark
[7] Univ Copenhagen, Linderstrom Lang Ctr Prot Sci, DK-2200 Copenhagen, Denmark
关键词
defect-engineered metal-organic frameworks; live cell imaging; machine learning; single particle tracking; MEMBRANES; DELIVERY;
D O I
10.1002/adma.202405898
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoscale Metal-Organic Frameworks (nanoMOFs) are widely implemented in a host of assays involving drug delivery, biosensing catalysis, and bioimaging. However, the cell pathways and cell fate remain poorly understood. Here, a new fluorescent nanoMOF integrating ATTO 655 into surface defects of colloidal UiO-66 is synthesized, allowing to track the spatiotemporal localization of Single nanoMOF in live cells. density functional theory reveals the stronger binding of ATTO 655 to the Zr6 cluster nodes compared with phosphate and Alendronate Sodium. Parallelized tracking of the spatiotemporal localization of thousands of nanoMOFs and analysis using machine learning platforms reveals whether nanoMOFs remain outside as well as their cellular internalization pathways. To quantitatively assess their colocalization with endo/lysosomal compartments, a colocalization proxy approach relying on the nanoMOF detection of particles in one channel to the signal in the corresponding endo/lysosomal compartments channel, considering signal versus local background intensity ratio and signal-to-noise ratio is developed. This strategy mitigates colocalization value inflation from high or low signal expression in endo/lysosomal compartments. The results accurately measure the nanoMOFs' colocalization from early to late endosomes and lysosomes and emphasize the importance of understanding their intracellular dynamics based on single-particle tracking for optimal and safe drug delivery. A trifecta of preparation of defect-engineered nanoscale metal-organic frameworks (nanoMOFs), single particle tracking in live cells, and machine learning analysis to utilize nanoMOFs, as effective delivery vehicles of pharmaceutics in cells. Deciphering cell entry and delivery pathways of ATTO-UiO-66@Al by tracking their spatiotemporal localization and co-localization with endo-lysosomal compartments. image
引用
收藏
页数:10
相关论文
共 47 条
  • [1] Defect-Engineered Metal-Organic Frameworks
    Fang, Zhenlan
    Bueken, Bart
    De Vos, Dirk E.
    Fischer, Roland A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (25) : 7234 - 7254
  • [2] Defect-engineered chiral metal-organic frameworks
    Niu, Xiaohui
    Wang, Yuewei
    Liu, Yongqi
    Yuan, Mei
    Zhang, Jianying
    Li, Hongxia
    Wang, Kunjie
    MICROCHIMICA ACTA, 2024, 191 (08)
  • [3] Defect-Engineered Chiral Metal-Organic Frameworks for Efficient Asymmetric Aldol Reaction
    Chen, Zijuan
    Yan, Xiaodan
    Li, Meiyan
    Wang, Shuhua
    Chen, Chao
    INORGANIC CHEMISTRY, 2021, 60 (07) : 4362 - 4365
  • [4] Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties
    Kozachuk, Olesia
    Luz, Ignacio
    Llabres i Xamena, Francesc X.
    Noei, Heshmat
    Kauer, Max
    Albada, H. Bauke
    Bloch, Eric D.
    Marler, Bernd
    Wang, Yuemin
    Muhler, Martin
    Fischer, Roland A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (27) : 7058 - 7062
  • [5] Defect-Engineered Metal-Organic Frameworks as Bioinspired Heterogeneous Catalysts for Amide Bond Formation
    Ahmad, Bayu I. Z.
    Jerozal, Ronald T.
    Meng, Sijing
    Oh, Changwan
    Cho, Yeongsu
    Kulik, Heather J.
    Lambert, Tristan H.
    Milner, Phillip J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (50) : 34743 - 34752
  • [6] Advances in the application of defect-engineered metal-organic frameworks as adsorbents during the decontamination of wastewater
    Musarurwa, Herbert
    CHEMICAL PAPERS, 2025, 79 (02) : 667 - 684
  • [7] Defect-Engineered Metal-Organic Frameworks: A Thorough Characterization of Active Sites Using CO as a Probe Molecule
    Wang, Junjun
    Wang, Weijia
    Fan, Zhiying
    Chen, Shuang
    Nefedov, Alexei
    Heissler, Stefan
    Fischer, Roland A.
    Woell, Christof
    Wang, Yuemin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (01): : 593 - 601
  • [8] Defect-engineered metal-organic frameworks for volumetrically and kinetically co-enhanced atmospheric water harvesting
    Fu, Qingling
    Liu, Dong
    Yang, Jianwei
    Jin, Yehao
    Sun, Zhibing
    Liu, Chunyu
    Sun, Yuze
    Sun, Chao
    Wang, Qianyou
    Ma, Qinglang
    GREEN CHEMISTRY, 2025, 27 (10) : 2680 - 2688
  • [9] Chitosan-engineered metal-organic frameworks as oral drug nanocarriers
    Horcajada, Patricia
    Hidalgo, Tania
    Gimenez-Marques, Monica
    Simon-Vazquez, Rosana
    Avila, Jose
    Asensio, Maria C.
    Salles, Fabric E.
    Serre, Christian
    Gonzalez-Fernandez, Africa
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C1281 - C1281
  • [10] Exploring Defect-Engineered Metal-Organic Frameworks with 1,2,4-Triazolyl Isophthalate and Benzoate Linkers
    Chetry, Sibo
    Lukman, Muhammad Fernadi
    Bon, Volodymyr
    Warias, Rico
    Fuhrmann, Daniel
    Moellmer, Jens
    Belder, Detlev
    Gopinath, Chinnakonda S.
    Kaskel, Stefan
    Poeppl, Andreas
    Krautscheid, Harald
    INORGANIC CHEMISTRY, 2024, 63 (23) : 10843 - 10853