Nanoclay Reinforced Polymer Composite Dielectrics for Ultra-Balanced Electrostatic Energy Storage

被引:0
|
作者
Liang, Xiaozheng [1 ]
Li, Quan [2 ,3 ,4 ]
Ren, Yangjun [2 ,3 ,4 ]
Xie, Weimin [1 ]
Tang, Aidong [2 ,3 ,4 ]
Yang, Huaming [1 ,2 ,3 ,4 ]
机构
[1] Cent South Univ, Sch Minerals Proc & Bioengn, Hunan Key Lab Mineral Mat & Applicat, Changsha 410083, Peoples R China
[2] China Univ Geosci, Engn Res Ctr Nanogeomat, Minist Educ, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Lab Adv Mineral Mat, Wuhan 430074, Peoples R China
[4] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
关键词
aluminosilicate nanoclay; charge traps; energy storage; interface engineering; polymer composite dielectrics; NANOCOMPOSITES; DENSITY;
D O I
10.1002/adfm.202408719
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The vast energy storage potential of polymer composite dielectrics in high pulse power sources stands in stark contrast to the unbalanced improvements in discharge energy density (Ud), charge-discharge efficiency (eta), and dielectric strength (Eb) as reported currently. Herein, a multistage coupled interface engineering design is proposed: a novel gradient alternating dielectric buffer layer (G-A-DBL) is constructed, which consists of inorganic low-k nanoclay aluminosilicate layer and high-k ferroelectric layer assembled in a highly oriented alternation as a basic unit and gradient distribution in polymer matrix. This design achieves electric field confinement from the nanoscale to the macroscopic level and achieves an ultra-balanced enhancement effect, resulting in a Ud of 28.5 J cm-3, an eta of 80%, and an Eb of 676 kV mm-1. The universal charge retention ability of charge traps from aluminosilicate heterogeneous skeletons is demonstrated by combining density functional theory calculations and scanning probe measurements. The G-A-DBL design integrates traditional charge trapping, heterostructure formation, and gradient modulation, effectively suppressing the entire process of carrier excitation, transport, and before capture. This work advances the basic understanding of charge confinement within inorganic interface charge traps, demonstrating the most well-balanced enhancement effect and potential for broad application across dielectric polymer nanocomposites. A heterogeneous skeleton trap of natural engineering aluminosilicate to anchor the space charge of dielectric polymer is reported. Further construction of a new gradient alternating dielectric buffer layer has achieved the most balanced performance improvement of discharge energy density (Ud), charge-discharge efficiency (eta) and dielectric strength (Eb). image
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Ferroelectric Polymer Dielectrics: Emerging Materials for Future Electrostatic Energy Storage Applications
    Panda, Maheswar
    [J]. 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2017), 2018, 1953
  • [2] High-Energy-Density and High Efficiency Polymer Dielectrics for High Temperature Electrostatic Energy Storage: A Review
    Yang, Minzheng
    Ren, Weibin
    Guo, Mengfan
    Shen, Yang
    [J]. SMALL, 2022, 18 (50)
  • [3] Polymer nanocomposite dielectrics for electrical energy storage
    Yang Shen
    Xin Zhang
    Ming Li
    Yuanhua Lin
    Ce-Wen Nan
    [J]. National Science Review, 2017, 4 (01) : 23 - 25
  • [4] Polymer nanocomposite dielectrics for capacitive energy storage
    Yang, Minzheng
    Guo, Mengfan
    Xu, Erxiang
    Ren, Weibin
    Wang, Danyang
    Li, Sean
    Zhang, Shujun
    Nan, Ce-Wen
    Shen, Yang
    [J]. NATURE NANOTECHNOLOGY, 2024, 19 (05) : 588 - 603
  • [5] Polymer nanocomposite dielectrics for electrical energy storage
    Shen, Yang
    Zhang, Xin
    Li, Ming
    Lin, Yuanhua
    Nan, Ce-Wen
    [J]. NATIONAL SCIENCE REVIEW, 2017, 4 (01) : 23 - 25
  • [6] Polymer nanocomposite dielectrics for capacitive energy storage
    Minzheng Yang
    Mengfan Guo
    Erxiang Xu
    Weibin Ren
    Danyang Wang
    Sean Li
    Shujun Zhang
    Ce-Wen Nan
    Yang Shen
    [J]. Nature Nanotechnology, 2024, 19 : 588 - 603
  • [7] Advanced polymer dielectrics for capacitive energy storage
    Venkatasubramanian, N
    Dang, TD
    Dalton, MJ
    Williams, LD
    Bentley, HJ
    Monter, RP
    Fries-Carr, S
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U370 - U370
  • [8] Epoxy Fiber Derived All-Polymer Films for High Performance Electrostatic Energy Storage Dielectrics
    Xu, Pengpeng
    Ma, Peilin
    Yu, Junyi
    Jiang, Kelun
    Ke, Shanming
    Huang, Haitao
    Yu, Shuhui
    Zhou, Yangbo
    Luo, Suibin
    [J]. ADVANCED ENGINEERING MATERIALS, 2024, 26 (13)
  • [9] Data Analysis and Prediction of Energy Storage Performance in Polymer Composite Dielectrics Based on Machine Learning
    Feng Y.
    Tang W.
    Zhang T.
    Chi Q.
    Chen Q.
    [J]. Gaodianya Jishu/High Voltage Engineering, 2022, 48 (05): : 1997 - 2004
  • [10] Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density
    Xie Bing
    Cai Jinxia
    Wang Tongtong
    Liu Zhiyong
    Jiang Shenglin
    Zhang Haibo
    [J]. JOURNAL OF INORGANIC MATERIALS, 2023, 38 (02) : 137 - 147