Low gelatin concentration assisted cellulose nanocrystals stabilized high internal phase emulsion: The key role of interaction

被引:4
|
作者
Wang, Yuxi [1 ]
Huang, Yue [3 ]
Li, Huameng [1 ]
Luo, Yuyuan [1 ]
Dai, Difei [1 ]
Zhang, Yuhao [1 ,4 ]
Wang, Hongxia [1 ,4 ]
Chen, Hai [1 ,4 ]
Wu, Jihong [2 ,5 ]
Dai, Hongjie [1 ,4 ,6 ]
机构
[1] Southwest Univ, Coll Food Sci, Chongqing 400715, Peoples R China
[2] Beijing Technol & Business Univ, China Food Flavor & Nutr Hlth Innovat Ctr, Beijing 100048, Peoples R China
[3] Chongqing Sericulture Sci & Technol Res Inst, Chongqing 400700, Peoples R China
[4] Chongqing Key Lab Special Food Cobuilt Sichuan & C, Chongqing 400715, Peoples R China
[5] 11 Fucheng Rd, Beijing, Peoples R China
[6] 2 Tiansheng Rd, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanocellulose; High internal phase emulsion; Gelatin; Interaction; RHEOLOGICAL PROPERTIES; PICKERING EMULSIONS;
D O I
10.1016/j.carbpol.2024.122175
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Low concentrations of gelatin (0.02-0.20 wt%) were applied to regulate the surface and interface properties of CNC (0.50 wt%) by forming CNC/G complexes. As gelatin concentration increased from 0 to 0.20 wt%, the potential value of CNC/G gradually changed from -44.50 to -17.93 mV. Additionally, various gelatin concentrations led to micromorphology changes of CNC/G complexes, with the formation of particle interconnection at gelatin concentration of 0.10 wt%, followed by network structure and enhanced aggregation at gelatin concentration of 0.15 and 0.20 wt% respectively. The water contact angle (25.91 degrees-80.23 degrees) and interface adsorption capacity of CNC/G were improved due to hydrophobic group exposure of gelatin. When gelatin concentration exceeded 0.10 % at a fixed oil phase volume fraction (75 %), a high internal phase emulsion (HIPE) stabilized by CNC/G can be formed with a good storage stability. The rheological and microstructure results of HIPE confirmed that low gelatin concentration can assist CNC to form stable emulsion structure. Especially, the auxiliary stabilization mechanism of various gelatin concentration was different. CNC/G-0.10 % and CNC/G0.15 % stabilized HIPE mainly depended on the enhanced interface adsorption and network structure, while CNC/G-0.20 % stabilized HIPE mainly relied on enhanced interface adsorption/accumulation due to weak electrostatic repulsion and aggregate granular morphology of CNC/G-0.20 %.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] High internal phase emulsions stabilized by cellulose nanocrystals
    Cherhal, Fanch
    Cathala, Bernard
    Capron, Isabelle
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [2] Cellulose nanocrystals for High Internal Phase Emulsion (HIPE) stabilization
    1600, Pulp and Paper Technical Association of Canada (03):
  • [3] CELLULOSE NANOCRYSTALS FOR HIGH INTERNAL PHASE EMULSION (HIPE) STABILIZATION
    Capron, Isabelle
    Cherhal, Fanch
    Cunha, Ana Gisela
    Cathala, Bernard
    J-FOR-JOURNAL OF SCIENCE & TECHNOLOGY FOR FOREST PRODUCTS AND PROCESSES, 2013, 3 (04): : 35 - 37
  • [4] Surfactant-Free High Internal Phase Emulsions Stabilized by Cellulose Nanocrystals
    Capron, Isabelle
    Cathala, Bernard
    BIOMACROMOLECULES, 2013, 14 (02) : 291 - 296
  • [5] Investigation of the formation mechanisms in high internal phase Pickering emulsions stabilized by cellulose nanocrystals
    Miao, Chuanwei
    Tayebi, Mani
    Hamad, Wadood Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2112):
  • [6] Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals
    Liu, Fu
    Zheng, Jie
    Huang, Cai-Huan
    Tang, Chuan-He
    Ou, Shi-Yi
    FOOD HYDROCOLLOIDS, 2018, 82 : 96 - 105
  • [7] High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing
    Ma, Tao
    Cui, Ranran
    Lu, Shuyu
    Hu, Xinna
    Xu, Bo
    Song, Yi
    Hu, Xiaosong
    FOOD HYDROCOLLOIDS, 2022, 125
  • [8] Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals
    Chen, Qiu-Hong
    Zheng, Jie
    Xu, Yan-Teng
    Yin, Shou-Wei
    Liu, Fu
    Tang, Chuan-He
    FOOD HYDROCOLLOIDS, 2018, 75 : 125 - 130
  • [9] High internal phase emulsions stabilized by starch nanocrystals
    Yang, Tao
    Zheng, Jie
    Zheng, Bi-Sheng
    Liu, Fu
    Wang, Shujun
    Tang, Chuan-He
    FOOD HYDROCOLLOIDS, 2018, 82 : 230 - 238
  • [10] Gelatin microgel-stabilized high internal phase emulsion for easy industrialization: Preparation, interfacial behavior and physical stability
    Mao, Ling
    Dai, Hongjie
    Du, Jie
    Feng, Xin
    Ma, Liang
    Zhu, Hankun
    Chen, Hai
    Wang, Hongxia
    Zhang, Yuhao
    INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES, 2022, 78