Poroelastic full-waveform inversion as training a neural network☆

被引:0
|
作者
Zhang, Wensheng [1 ]
Chen, Zheng [2 ]
机构
[1] Chinese Acad Sci, LSEC, ICMSEC, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Poroelastic wave equations; FWI; Recurrent neural network; Stochastic gradient descent; Automatic differentiation; PERFECTLY MATCHED LAYER; AUTOMATIC DIFFERENTIATION; GRAZING-INCIDENCE; ELASTIC WAVES; PROPAGATION; ALGORITHM;
D O I
10.1016/j.jappgeo.2024.105479
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we investigate the full-waveform inversion (FWI) for recovering three media parameters of the poroelastic wave equations as training a neural network. We recast the poroelastic wave simulation in the time domain by the staggered-grid schemes into a process of recurrent neural networks (RNNs). Furthermore, the parameters of RNNs coincide with the inverted parameters in FWI. The algorithm of FWI with a stochastic gradient optimizer named Adam is proposed. The gradients of the objective function with respect to the media parameters are computed by the automatic differentiation. FWI is implemented numerically for three media parameters, i.e., solid density, Lame<acute accent> parameter of of saturated matrix and shear modulus of dry porous matrix. The numerical computations with two designed models show the good imaging ability of the described method in this paper. It can be applied to invert more media parameters of the poroelastic wave equations.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Full waveform inversion as training a neural network
    Zhang, Wensheng
    Chen, Zheng
    [J]. PHYSICA SCRIPTA, 2023, 98 (06)
  • [2] Parametric convolutional neural network-domain full-waveform inversion
    Wu, Yulang
    McMechan, George A.
    [J]. GEOPHYSICS, 2019, 84 (06) : R881 - R896
  • [3] Frequency domain full-waveform inversion in a fluid-saturated poroelastic medium
    Yang, Qingjie
    Malcolm, Alison
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 225 (01) : 68 - 84
  • [4] Petrophysical parameter estimation using Biot-poroelastic full-waveform inversion
    Wang, Haiwei
    Liu, Yike
    Liu, Linong
    Yan, Tianfan
    Zhang, Zhendong
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 237 (03) : 1639 - 1654
  • [5] Evolutionary full-waveform inversion
    van Herwaarden, Dirk Philip
    Afanasiev, Michael
    Thrastarson, Solvi
    Fichtner, Andreas
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 224 (01) : 306 - 311
  • [6] Variational full-waveform inversion
    Zhang, Xin
    Curtis, Andrew
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (01) : 406 - 411
  • [7] Interferometric full-waveform inversion
    Sinha, Mrinal
    Schuster, Gerard T.
    [J]. GEOPHYSICS, 2019, 84 (01) : R45 - R60
  • [8] Variational full-waveform inversion
    Zhang X.
    Curtis A.
    [J]. Geophysical Journal International, 2021, 222 (01): : 406 - 411
  • [9] ML-misfit: A neural network formulation of the misfit function for full-waveform inversion
    Sun, Bingbing
    Alkhalifah, Tariq
    [J]. FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [10] Elastic Full-Waveform Inversion via Physics-Informed Recurrent Neural Network
    Lu, Cai
    Wang, Yunchen
    Zou, Xuyang
    Zong, Jingjing
    Su, Qin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62