Image-based profiling: a powerful and challenging new data type

被引:0
|
作者
Way, Gregory P. [1 ]
Spitzer, Hannah [2 ]
Burnham, Philip [3 ]
Raj, Arjun [4 ]
Theis, Fabian [2 ]
Singh, Shantanu [5 ]
Carpenter, Anne E. [5 ]
机构
[1] Univ Colorado Anschutz Med Sch, Ctr Hlth Artificial Intelligence, 1890 N Revere Ct, Aurora, CO 80045 USA
[2] Helmholtz Ctr, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[3] Kanvas Biosci, 1 Deer Pk Dr, South Brunswick, NJ 08852 USA
[4] Univ Penn, Dept Bioengn, 220 S 33rd St, Philadelphia, PA 19104 USA
[5] Broad Inst Harvard & MIT, Imaging Platform, 415 Main St, Cambridge, MA 02142 USA
关键词
Computational Biology; Morphology; Systems Biology; Cell State; Cell Structure; Functional Genomics; Data Integration; Drug Discovery; Single-cell; Perturbation Biology; GUIDE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software has provided cell biologists the power to quantify specific cellular features in cell images at scale. Before long, these biologists also recognized the potential to extract much more biological information from the same images. From here, the field of image-based profiling, the process of extracting unbiased representations that capture morphological cell state, was born. We are still in the early days of image-based profiling, and it is clear that the many opportunities to interrogate biological systems come with significant challenges. These challenges include building expressive and biologically-relevant representations, adjusting for technical noise, writing generalizable software infrastructure, continuing to foster a culture of open science, and promoting FAIR (findable, accessible, interoperable, and reusable) data. We present a workshop at the Pacific Symposium on Biocomputing 2022 to introduce the field of image-based profiling to the broader computational biology community. In the following document, we introduce image-based profiling, discuss current state-of-the-art methods and limitations, and provide rationale for why now is the perfect time for the field to expand. We also introduce our invited speakers and agenda, which together provide an introduction to the field complemented by in- depth application areas in industry and academia. We also include five lightning talks to complement the invited speakers on various methodological and discovery advances.
引用
收藏
页码:407 / 411
页数:5
相关论文
共 50 条
  • [1] A new type of image-based key
    Kirchoff, Bruce
    Remington, David
    Fu, Lixin
    Sadri, Fereidoon
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 825 - +
  • [2] Data-analysis strategies for image-based cell profiling
    Caicedo, Juan C.
    Cooper, Sam
    Heigwer, Florian
    Warchal, Scott
    Qiu, Peng
    Molnar, Csaba
    Vasilevich, Aliaksei S.
    Barry, Joseph D.
    Bansal, Harmanjit Singh
    Kraus, Oren
    Wawer, Mathias
    Paavolainen, Lassi
    Herrmann, Markus D.
    Rohban, Mohammad
    Hung, Jane
    Hennig, Holger
    Concannon, John
    Smith, Ian
    Clemons, Paul A.
    Singh, Shantanu
    Rees, Paul
    Horvath, Peter
    Linington, Roger G.
    Carpenter, Anne E.
    NATURE METHODS, 2017, 14 (09) : 849 - 863
  • [3] Data-analysis strategies for image-based cell profiling
    Caicedo J.C.
    Cooper S.
    Heigwer F.
    Warchal S.
    Qiu P.
    Molnar C.
    Vasilevich A.S.
    Barry J.D.
    Bansal H.S.
    Kraus O.
    Wawer M.
    Paavolainen L.
    Herrmann M.D.
    Rohban M.
    Hung J.
    Hennig H.
    Concannon J.
    Smith I.
    Clemons P.A.
    Singh S.
    Rees P.
    Horvath P.
    Linington R.G.
    Carpenter A.E.
    Nature Methods, 2017, 14 (9) : 849 - 863
  • [4] Applications in image-based profiling of perturbations
    Caicedo, Juan C.
    Singh, Shantanu
    Carpenter, Anne E.
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 39 : 134 - 142
  • [5] Image-based cell profiling enhancement via data cleaning methods
    Rezvani, Arghavan
    Bigverdi, Mahtab
    Rohban, Mohammad Hossein
    PLOS ONE, 2022, 17 (05):
  • [6] Learning representations for image-based profiling of perturbations
    Moshkov, Nikita
    Bornholdt, Michael
    Benoit, Santiago
    Smith, Matthew
    Mcquin, Claire
    Goodman, Allen
    Senft, Rebecca A.
    Han, Yu
    Babadi, Mehrtash
    Horvath, Peter
    Cimini, Beth A.
    Carpenter, Anne E.
    Singh, Shantanu
    Caicedo, Juan C.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [7] Pooled genetic screens with image-based profiling
    Walton, Russell T.
    Singh, Avtar
    Blainey, Paul C.
    MOLECULAR SYSTEMS BIOLOGY, 2022, 18 (11)
  • [8] Learning representations for image-based profiling of perturbations
    Nikita Moshkov
    Michael Bornholdt
    Santiago Benoit
    Matthew Smith
    Claire McQuin
    Allen Goodman
    Rebecca A. Senft
    Yu Han
    Mehrtash Babadi
    Peter Horvath
    Beth A. Cimini
    Anne E. Carpenter
    Shantanu Singh
    Juan C. Caicedo
    Nature Communications, 15
  • [9] Image-Based Automatic Watermeter Reading under Challenging Environments
    Hong, Qingqi
    Ding, Yiwei
    Lin, Jinpeng
    Wang, Meihong
    Wei, Qingyang
    Wang, Xianwei
    Zeng, Ming
    SENSORS, 2021, 21 (02) : 1 - 18
  • [10] Optimizing the Cell Painting assay for image-based profiling
    Cimini, Beth A.
    Chandrasekaran, Srinivas Niranj
    Kost-Alimova, Maria
    Miller, Lisa
    Goodale, Amy
    Fritchman, Briana
    Byrne, Patrick
    Garg, Sakshi
    Jamali, Nasim
    Logan, David J.
    Concannon, John B.
    Lardeau, Charles-Hugues
    Mouchet, Elizabeth
    Singh, Shantanu
    Abbasi, Hamdah Shafqat
    Aspesi, Jr Peter
    Boyd, Justin D.
    Gilbert, Tamara
    Gnutt, David
    Hariharan, Santosh
    Hernandez, Desiree
    Hormel, Gisela
    Juhani, Karolina
    Melanson, Michelle
    Mervin, Lewis H.
    Monteverde, Tiziana
    Pilling, James E.
    Skepner, Adam
    Swalley, Susanne E.
    Vrcic, Anita
    Weisbart, Erin
    Williams, Guy
    Yu, Shan
    Zapiec, Bolek
    Carpenter, Anne E.
    NATURE PROTOCOLS, 2023, 18 (07) : 1981 - +