Interpretable Deep Learning for System Identification Using Nonlinear Output Frequency Response Functions

被引:0
|
作者
Jacobs, Will [1 ]
Anderson, Sean R. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, England
关键词
deep learning; system identification; nonlinear output frequency response functions;
D O I
10.1007/978-3-031-55568-8_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning methods contain powerful tools for modelling nonlinear dynamic systems. However, these methods usually lack interpretability, so although they are useful for predicting outputs they tend to be less useful for giving insight into system characteristics. In this paper, we aim to demonstrate a method for interpreting and comparing deep learning models used in nonlinear system identification, using nonlinear output frequency response functions (NOFRFs). NOFRFs describe nonlinear dynamic system behaviour in the frequency domain, which is a classical way of interpreting and understanding system behaviour (via resonances, super and sub-harmonics, and energy transfer). We demonstrate the approach on a real system (a magneto-rheological damper), showing how different types of deep learning model, recurrent networks with gated recurrent units (GRUs) and long short term memory (LSTM), can be interpreted and compared in the frequency domain.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 50 条
  • [1] Interpretable Deep Learning for Nonlinear System Identification Using Frequency Response Functions With Ensemble Uncertainty Quantification
    Jacobs, Will R.
    Kadirkamanathan, Visakan
    Anderson, Sean R.
    [J]. IEEE ACCESS, 2024, 12 : 11052 - 11065
  • [2] Analysis of Output Response of Nonlinear Systems using Nonlinear Output Frequency Response Functions
    Zhu, Yunpeng
    Lang, Z. Q.
    [J]. 2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2016,
  • [3] Application of Nonlinear Output Frequency Response Functions and Deep Learning to RV Reducer Fault Diagnosis
    Chen, Lerui
    Hu, Heyu
    Zhang, Zerui
    Wang, Xiaoqi
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [4] The analysis of nonlinear systems in the frequency domain using Nonlinear Output Frequency Response Functions
    Bayma, Rafael Suzuki
    Zhu, Yunpeng
    Lang, Zi-Qiang
    [J]. AUTOMATICA, 2018, 94 : 452 - 457
  • [5] Crack detection using nonlinear output frequency response functions
    Peng, Z. K.
    Lang, Z. Q.
    Billings, S. A.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2007, 301 (3-5) : 777 - 788
  • [6] Frequency response functions: Validity and usefulness in nonlinear system identification
    Tomlinson, GR
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S119 - S120
  • [7] Analysis of Locally Nonlinear MDOF Systems Using Nonlinear Output Frequency Response Functions
    Peng, Z. K.
    Lang, Z. Q.
    Billings, S. A.
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2009, 131 (05): : 0510071 - 05100710
  • [8] Numerical analysis of cracked beams using nonlinear output frequency response functions
    Peng, Z. K.
    Lang, Z. Q.
    Chu, F. L.
    [J]. COMPUTERS & STRUCTURES, 2008, 86 (17-18) : 1809 - 1818
  • [9] Adaptive Identification Algorithm of Nonlinear Output Frequency Response Function of Multivariable System
    Zhang Jialiang
    Cao Jianfu
    [J]. 2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 358 - 362
  • [10] Nonlinear System Identification Using Deep Learning and Randomized Algorithms
    de la Rosa, Erick
    Yu, Wen
    Li, Xiaoou
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 274 - 279