Robust local K-proximal plane clustering based on L2,1-norm minimization

被引:0
|
作者
Wang, Jiawei [1 ]
Liu, Yingan [1 ]
Fu, Liyong [1 ]
机构
[1] Nanjing Forestry Univ, Nanjing, Peoples R China
关键词
Non-greedy weighted iterative optimization algorithm; L21-norm; k-plane clustering; Eigenvalue problem; SUPPORT VECTOR MACHINE; CLASSIFICATION; FLAT;
D O I
10.1007/s13042-024-02220-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
K-proximal plane clustering (kPPC) cluster data points to the center points and local k-proximal plane clustering (LkPPC) uses the combination of hyperplane and points as the cluster center to localize the hyperplane. However, the l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{2}$$\end{document}-norm is employed to group the data into corresponding clusters, which is sensitive to outliers because of the square operation. Many previous works chose to use l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document}-norm instead of l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{2}$$\end{document}-norm to improve robustness. However, this approach has limited improvement in the robustness of outlier, and the solution of l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document}-norm mostly uses a greedy algorithm search strategy, which is easy to fall into local optimization and consumes a long time. In this paper, we propose a clustering method using l2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{2,1}$$\end{document}-norm, named RLkPPC. To solve the objective function, we combine an efficient iterative optimization algorithm with the Lagrange multiplier method, and on this basis, propose a non-greedy weighted iterative optimization algorithm for solving the l2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{2,1}$$\end{document}-norm minimum problem. Compared to existing methods, the advantage of our method is: (1) similar to LkPPC, it has a clear geometric explanation; (2) it has good robustness and a stronger ability to resist the influence of outliers; (3) it uses a non-greedy weighted iterative optimization algorithm, prevent falling into local optima. The experimental results on some artificial and benchmark datasets indicate that our algorithm has the robustness and clustering accuracy advantages.
引用
收藏
页码:5143 / 5158
页数:16
相关论文
共 50 条
  • [1] Local k-proximal plane clustering
    Yang, Zhi-Min
    Guo, Yan-Ru
    Li, Chun-Na
    Shao, Yuan-Hai
    [J]. NEURAL COMPUTING & APPLICATIONS, 2015, 26 (01): : 199 - 211
  • [2] Local k-proximal plane clustering
    Zhi-Min Yang
    Yan-Ru Guo
    Chun-Na Li
    Yuan-Hai Shao
    [J]. Neural Computing and Applications, 2015, 26 : 199 - 211
  • [3] k-Proximal plane clustering
    Li-Ming Liu
    Yan-Ru Guo
    Zhen Wang
    Zhi-Min Yang
    Yuan-Hai Shao
    [J]. International Journal of Machine Learning and Cybernetics, 2017, 8 : 1537 - 1554
  • [4] Robust Multiple Kernel K-means Using l2,1-Norm
    Du, Liang
    Zhou, Peng
    Shi, Lei
    Wang, Hanmo
    Fan, Mingyu
    Wang, Wenjian
    Shen, Yi-Dong
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3476 - 3482
  • [5] Robust classification using l2,1-norm based regression model
    Ren, Chuan-Xian
    Dai, Dao-Qing
    Yan, Hong
    [J]. PATTERN RECOGNITION, 2012, 45 (07) : 2708 - 2718
  • [6] l2,1-norm based Regression for Classification
    Ren, Chuan-Xian
    Dai, Dao-Qing
    Yan, Hong
    [J]. 2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 485 - 489
  • [7] k-Proximal plane clustering
    Liu, Li-Ming
    Guo, Yan-Ru
    Wang, Zhen
    Yang, Zhi-Min
    Shao, Yuan-Hai
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (05) : 1537 - 1554
  • [8] Robust discriminant feature selection via joint L2,1-norm distance minimization and maximization
    Yang, Zhangjing
    Ye, Qiaolin
    Chen, Qiao
    Ma, Xu
    Fu, Liyong
    Yang, Guowei
    Yan, He
    Liu, Fan
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 207
  • [9] The l2,1-Norm Stacked Robust Autoencoders for Domain Adaptation
    Jiang, Wenhao
    Gao, Hongchang
    Chung, Fu-lai
    Huang, Heng
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1723 - 1729
  • [10] Sparse Neighborhood Preserving Embedding via L2,1-Norm Minimization
    Zhou, Youpeng
    Ding, Yulin
    Luo, Yifu
    Ren, Haoliang
    [J]. PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2016, : 378 - 382