Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review

被引:17
|
作者
Cheng, Jian [1 ]
Deng, Changjian [1 ]
Su, Yanzhou [1 ]
An, Zeyu
Wang, Qi [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Unmanned aerial vehicle; Remote sensing images; Deep learning; RANDOM-FIELD MODEL; ANALYSIS OBIA; UAV; CLASSIFICATION; NETWORK; SCALE; MULTISCALE; BENCHMARK; TEXTURE; FUSION;
D O I
10.1016/j.isprsjprs.2024.03.012
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Unmanned Aerial Vehicle (UAV) has seen a dramatic rise in popularity for remote-sensing image acquisition and analysis in recent years. It has brought promising results in low-altitude monitoring tasks that require detailed visual inspections. Semantic segmentation is one of the hot topics in UAV remote sensing image analysis, as its capability to mine contextual semantic information from UAV images is crucial for achieving a fine-grained understanding of scenes. However, in the remote sensing field, recent reviews have not focused on combining "UAV remote sensing"and "semantic segmentation"to summarize the advanced works and future trends. In this study, we focus primarily on describing various recent semantic segmentation methods applied in UAV remote sensing images and summarizing their advantages and limitations. According to the distinction in modeling contextual semantic information, we have categorized and outlined the methods based on graph-based contextual models and deep-learning-based models. Publicly available UAV-based image datasets are also gathered to encourage systematic research on advanced semantic segmentation methods. We provide quantitative results of representative methods on two high-resolution UAV-based image datasets for fair comparisons and discussions in terms of semantic segmentation accuracy and model inference efficiency. Besides, this paper concludes some remaining challenges and future directions in semantic segmentation for UAV remote sensing images and points out that methods based on deep learning will become the future research trend.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [1] Methods and datasets on semantic segmentation for Unmanned Aerial Vehicle remote sensing images: A review
    Cheng, Jian
    Deng, Changjian
    Su, Yanzhou
    An, Zeyu
    Wang, Qi
    ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 211 : 1 - 34
  • [2] Deep semantic segmentation of unmanned aerial vehicle remote sensing images based on fully convolutional neural network
    Zheng, Guoxun
    Jiang, Zhengang
    Zhang, Hua
    Yao, Xuekun
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [3] Depth Semantic Segmentation of Tobacco Planting Areas from Unmanned Aerial Vehicle Remote Sensing Images in Plateau Mountains
    Huang, Liang
    Wu, Xuequn
    Peng, Qiuzhi
    Yu, Xueqin
    JOURNAL OF SPECTROSCOPY, 2021, 2021
  • [5] DeepLabV3_DHC: Semantic Segmentation of Urban Unmanned Aerial Vehicle Remote Sensing Image
    Sun Guowen
    Luo Xiaobo
    Zhang Kunqiang
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (04)
  • [6] Unmanned Aerial Vehicle for Remote Sensing Applications-A Review
    Yao, Huang
    Qin, Rongjun
    Chen, Xiaoyu
    REMOTE SENSING, 2019, 11 (12)
  • [7] Water extraction from unmanned aerial vehicle remote sensing images
    Bian Y.
    Gong Y.-S.
    Ma G.-P.
    Wang C.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (04): : 764 - 774
  • [8] Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring
    Wang, L. (wanglimin01@caas.cn), 1600, Chinese Society of Agricultural Engineering (29):
  • [9] Road Segmentation of Unmanned Aerial Vehicle Remote Sensing Images Using Adversarial Network With Multiscale Context Aggregation
    Li, Yuxia
    Peng, Bo
    He, Lei
    Fan, Kunlong
    Tong, Ling
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (07) : 2279 - 2287
  • [10] A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications
    Zhang, Zhengxin
    Zhu, Lixue
    DRONES, 2023, 7 (06)