Monitoring small-scale irrigation performance using remote sensing in the Upper Blue Nile Basin, Ethiopia

被引:1
|
作者
Mekonnen, Yilkal Gebeyehu [1 ,2 ]
Alamirew, Tena [3 ]
Tadesse, Kassahun Birhanu [4 ]
Chukalla, Abebe Demissie [5 ]
机构
[1] Addis Ababa Univ, Africa Ctr Excellence Water Management, Hydrol & Water Resources Management, Addis Ababa, Ethiopia
[2] Debre Markos Univ, Dept Nat Resource Management, Debre Markos, Ethiopia
[3] Addis Ababa Univ, Ethiopian Inst Water Resources, Water & Land Resource Ctr, Addis Ababa, Ethiopia
[4] Debre Markos Univ, Dept Hydraul & Water Resources Engn, Debre Markos, Ethiopia
[5] IHE Delft Inst Water Educ, Dept Land & Water Management, NL-2611 AX Delft, Netherlands
关键词
Irrigation Performance; Remote Sensing; Small-Scale Irrigation; Water Productivity; Google Earth Engine; WATER PRODUCTIVITY; ENERGY-BALANCE; EVAPOTRANSPIRATION; INDICATORS; ALGORITHM; REGION;
D O I
10.1016/j.agwat.2024.108928
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Temporal and spatial irrigation performance indicators are crucial in informing decisions for improving the efficiency and sustainability of water and land resources. However, evaluating these indicators requires reliable and cost-effective data, which is challenging to obtain, particularly for small-scale irrigation schemes. This study aimed to assess the performance of a small-scale irrigation scheme using remote sensing and ground truth data for the 2021/22 and 2022/2023 irrigation seasons employing the Shimburit irrigation scheme in Northwestern Ethiopia, predominantly cultivated with wheat, as a case study. The performance indicators, including equity, adequacy, overall consumed ratio (OCR), and productivity, were assessed. The actual evapotranspiration (ET), the main input for performance assessment, was estimated using the surface energy balance for land - improved (SEBALI) model in the Google Earth Engine (GEE) platform. The results revealed good equity within the scheme, with a coefficient of variation of ETa value per field inside the scheme are 1.90 and 1.63 for the respective seasons. The water use adequacy across the fields was assessed to be very good in the two seasons. The scheme's overall consumed ratio (OCR) was 0.54 and 0.43 during the two subsequent seasons. Water productivity of wheat is 3.03 kg/m3 and 3.06 kg/m3 in the two seasons. However, due to untimely rainfall during harvest, land productivity declined from 3.25 tons/ha in the first season to 2.08 tons/ha in the second season. The study demonstrates the potential of using remote sensing to evaluate irrigation performance indicators and water productivity in smallholder irrigated fields.
引用
下载
收藏
页数:11
相关论文
共 50 条