PDE-Based Two-Dimensional Radiomagnetotelluric forward Modelling Using Vertex-Centered Finite-Volume Scheme

被引:0
|
作者
Xie, Wei [1 ,2 ]
Zhu, Wendi [1 ,2 ]
Tong, Xiaozhong [1 ,2 ,3 ]
Ma, Huiying [4 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
[2] Cent South Univ, Key Lab Nonferrous & Geol Hazard Detect, Changsha 410083, Peoples R China
[3] Cent South Univ, Key Lab Metallogen Predict Nonferrous Met & Geol E, Minist Educ, Changsha 410083, Peoples R China
[4] Hunan Inst Geol Survey, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
radiomagnetotelluric; forward modelling; finite-volume algorithm; vertex-centered technique; two-dimensional; NONLINEAR HELMHOLTZ-EQUATION; JOINT INVERSION; MAGNETOTELLURICS; RESISTIVITY;
D O I
10.3390/math12132096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An efficient finite-volume algorithm, based on the vertex-centered technique, is proposed for solving two-dimensional radiomagnetotelluric forward modeling. Firstly, we derive the discrete expressions of the radiomagnetotelluric Helmholtz-type equation and the corresponding mixed boundary conditions using the vertex-centered finite-volume technique. Then, the corresponding approximate solutions of the radiomagnetotelluric forward problem can be calculated by applying the finite-volume scheme to treat the boundary conditions. Secondly, we apply the finite-volume algorithm to solve two-dimensional Helmholtz equations and the resistivity half-space model. Numerical experiments demonstrate the high accuracy of the proposed approach. Finally, we summarize the radiomagnetotelluric responses through a numerical simulation of a two-dimensional model, which enables qualitative interpretation of field data. Furthermore, our numerical method can be extended and implemented for three-dimensional radiomagnetotelluric forward modeling to achieve more accurate computation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Two-dimensional magnetotelluric forward modeling based on vertex-centered finite volume method
    Tong X.-Z.
    Xie W.
    [J]. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2023, 33 (05): : 1682 - 1694
  • [2] A VERTEX-CENTERED FINITE-VOLUME METHOD WITH SHOCK DETECTION
    CRUMPTON, PI
    SHAW, GJ
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 18 (06) : 605 - 625
  • [3] Forward modeling for 2.5D direct current sounding based on vertex-centered finite-volume method
    Ouyang L.
    Zhao X.
    Tong X.
    Xie W.
    Li H.
    [J]. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2023, 54 (07): : 2758 - 2767
  • [4] On vertex-centered unstructured finite-volume methods for stretched anisotropic triangulations
    Viozat, C
    Held, C
    Mer, K
    Dervieux, A
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (35-36) : 4733 - 4766
  • [5] A generalization of the vertex-centered finite volume scheme to arbitrary high order
    Vogel, Andreas
    Xu, Jinchao
    Wittum, Gabriel
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2010, 13 (05) : 221 - 228
  • [6] Two-dimensional magnetotelluric anisotropic forward modeling using finite-volume method
    Wang Ning
    Tang JingTian
    Ren ZhengYong
    Xiao Xiao
    Huang XiangYu
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2019, 62 (10): : 3912 - 3922
  • [7] Coastal ocean forecasting on the GPU using a two-dimensional finite-volume scheme
    Brodtkorb, Andre R.
    Holm, Havard Heitlo
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2021, 73 (01) : 1 - 22
  • [8] Comparison of cell- and vertex-centered finite-volume schemes for flow in fractured porous media
    Glaeser, Dennis
    Schneider, Martin
    Flemisch, Bernd
    Helmig, Rainer
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 448
  • [9] A Vertex-Centered and Positivity-Preserving Finite Volume Scheme for Two-Dimensional Three-Temperature Radiation Diffusion Equations on General Polygonal Meshes
    Su, Shuai
    Wu, Jiming
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (01) : 220 - 252
  • [10] Convergence analysis of a vertex-centered finite volume scheme for a copper heap leaching model
    Cariaga, Emilio
    Concha, Fernando
    Pop, Iuliu Sorin
    Sepulveda, Mauricio
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (09) : 1059 - 1077