Improving image quality of the middle ear with ultra-high-resolution CT coupled with deep-learning image reconstruction algorithm

被引:0
|
作者
Greffier, Joel [1 ]
Soyer, Philippe [2 ,3 ]
Dabli, Djamel [1 ]
机构
[1] Montpellier Univ, Nimes Univ Hosp, Dept Med Imaging, IMAGINE UR UM 103, F-30029 Nimes, France
[2] Univ Paris Cite, Fac Med, F-75006 Paris, France
[3] Hop Cochin, AP HP, Dept Radiol, F-75014 Paris, France
关键词
Deep-learning image reconstruction; algorithms; Middle ear CT; Multidetector computed tomography; Task-based image quality assessment; Ultra-high-resolution CT;
D O I
10.1016/j.diii.2024.02.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
引用
收藏
页码:211 / 212
页数:2
相关论文
共 50 条
  • [1] Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT
    Motonori Akagi
    Yuko Nakamura
    Toru Higaki
    Keigo Narita
    Yukiko Honda
    Jian Zhou
    Zhou Yu
    Naruomi Akino
    Kazuo Awai
    European Radiology, 2019, 29 : 6163 - 6171
  • [2] Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT
    Akagi, Motonori
    Nakamura, Yuko
    Higaki, Toru
    Narita, Keigo
    Honda, Yukiko
    Zhou, Jian
    Yu, Zhou
    Akino, Naruomi
    Awai, Kazuo
    EUROPEAN RADIOLOGY, 2019, 29 (11) : 6163 - 6171
  • [3] Correction to: Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT
    Motonori Akagi
    Yuko Nakamura
    Toru Higaki
    Keigo Narita
    Yukiko Honda
    Jian Zhou
    Zhou Yu
    Naruomi Akino
    Kazuo Awai
    European Radiology, 2019, 29 : 4526 - 4527
  • [4] Ultra-high-resolution CT urography: Importance of matrix size and reconstruction technique on image quality
    Nakamoto, Atsushi
    Hori, Masatoshi
    Onishi, Hiromitsu
    Ota, Takashi
    Fukui, Hideyuki
    Ogawa, Kazuya
    Yano, Keigo
    Tatsumi, Mitsuaki
    Tomiyama, Noriyuki
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 130
  • [5] Ultra-High-Resolution CT of the Head and Neck with Deep Learning Reconstruction-Assessment of Image Quality and Radiation Exposure and Intraindividual Comparison with Normal-Resolution CT
    Altmann, Sebastian
    Mercado, Mario A. Abello A.
    Ucar, Felix A.
    Kronfeld, Andrea
    Al-Nawas, Bilal
    Mukhopadhyay, Anirban
    Booz, Christian
    Brockmann, Marc A.
    Othman, Ahmed E.
    DIAGNOSTICS, 2023, 13 (09)
  • [6] Image quality of coronary CT angiography at ultra low tube voltage reconstructed with a deep-learning image reconstruction algorithm in patients of different weight
    Zhu, Lijuan
    Ha, Ruoshui
    Machida, Haruhiko
    Shi, Xiaomeng
    Wang, Fang
    Chen, Kemin
    Chen, Dazhi
    Cao, Yongpei
    Shen, Yun
    Yang, Lili
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (06) : 3891 - 3901
  • [7] Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT (10.1007/s00330-019-06170-3, 2019)
    Akagi, Motonori
    Nakamura, Yuko
    Higaki, Toru
    Narita, Keigo
    Honda, Yukiko
    Zhou, Jian
    Yu, Zhou
    Akino, Naruomi
    Awai, Kazuo
    EUROPEAN RADIOLOGY, 2019, 29 (08) : 4526 - 4527
  • [8] The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting
    Hata, A.
    Yanagawa, M.
    Yoshida, Y.
    Miyata, T.
    Kikuchi, N.
    Honda, O.
    Tomiyama, N.
    CLINICAL RADIOLOGY, 2021, 76 (02) : 155.e15 - 155.e23
  • [9] Improving Image Quality and Nodule Characterization in Ultra-low-dose Lung CT with Deep Learning Image Reconstruction
    Ma, Guangming
    Dou, Yuequn
    Dang, Shan
    Yu, Nan
    Guo, Yanbing
    Han, Dong
    Fan, Qiuju
    ACADEMIC RADIOLOGY, 2024, 31 (07) : 2944 - 2952
  • [10] Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study
    Joël Greffier
    Quentin Durand
    Julien Frandon
    Salim Si-Mohamed
    Maeliss Loisy
    Fabien de Oliveira
    Jean-Paul Beregi
    Djamel Dabli
    European Radiology, 2023, 33 : 699 - 710