On Wilks' joint moment formulas for embedded principal minors of Wishart random matrices

被引:0
|
作者
Genest, C. [1 ]
Ouimet, F. [1 ]
Richards, D. [2 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[2] Penn State Univ, Dept Stat, University Pk, PA USA
来源
STAT | 2024年 / 13卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Gaussian product inequality; moments; principal minors; Schur complement; Wishart distribution; zonal polynomials; PRODUCTS;
D O I
10.1002/sta4.706
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In 1934, the American statistician Samuel S. Wilks derived remarkable formulas for the joint moments of embedded principal minors of sample covariance matrices in multivariate Gaussian populations, and he used them to compute the moments of sample statistics in various applications related to multivariate linear regression. These important but little-known moment results were extended in 1963 by the Australian statistician A. Graham Constantine using Bartlett's decomposition. In this note, a new proof of Wilks' results is derived using the concept of iterated Schur complements, thereby bypassing Bartlett's decomposition. Furthermore, Wilks' open problem of evaluating joint moments of disjoint principal minors of Wishart random matrices is related to the Gaussian product inequality conjecture.
引用
下载
收藏
页数:6
相关论文
共 6 条
  • [1] Extreme eigenvalues of principal minors of random matrices with moment conditions
    Jianwei Hu
    Seydou Keita
    Kang Fu
    Journal of the Korean Statistical Society, 2023, 52 : 715 - 735
  • [2] Correction: Extreme eigenvalues of principal minors of random matrices with moment conditions
    Jianwei Hu
    Seydou Keita
    Kang Fu
    Journal of the Korean Statistical Society, 2023, 52 : 765 - 765
  • [3] Extreme eigenvalues of principal minors of random matrix with moment conditions
    Hu, Jianwei
    Keita, Seydou
    Fu, Kang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (03) : 715 - 735
  • [4] ASYMPTOTIC ANALYSIS FOR EXTREME EIGENVALUES OF PRINCIPAL MINORS OF RANDOM MATRICES
    Cai, T. Tony
    Jiang, Tiefeng
    Li, Xiaoou
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (06): : 2953 - 2990
  • [5] Number of Relevant Directions in Principal Component Analysis and Wishart Random Matrices
    Majumdar, Satya N.
    Vivo, Pierpaolo
    PHYSICAL REVIEW LETTERS, 2012, 108 (20)
  • [6] Extreme eigenvalues of principal minors of random matrices with moment conditions (Jun, 10.1007/s42952-023-00218-3, 2023)
    Hu, Jianwei
    Keita, Seydou
    Fu, Kang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (03) : 765 - 765