Vector Quantized Diffusion Models for Multiple Appropriate Reactions Generation

被引:0
|
作者
Nguyen, Minh-Duc [1 ]
Yang, Hyung-Jeong [1 ]
Ho, Ngoc-Huynh [1 ]
Kim, Soo-Hyung [1 ]
Kim, Seungwon [1 ]
Shin, Ji-Eun [1 ]
机构
[1] Chonnam Natl Univ, Gwangju, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/FG59268.2024.10581978
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the realm of dyadic interactions, the ability to generate appropriate facial reactions is paramount for the conveyance of empathy and understanding. This paper introduces a novel framework that leverages the strengths of a diffusion model architecture, underpinned by a vector quantized variational autoencoder (VQ-VAE) to synthesize facial reactions that are contextually apt. We rigorously evaluate our model on the IEEE FG REACT2024 dataset, where it demonstrates superior performance, outshining baseline methods in terms of effectiveness. The results underscore the potential of our framework to enhance the fidelity of digital human interactions, paving the way for more nuanced and emotionally intelligent systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Leveraging the Latent Diffusion Models for Offline Facial Multiple Appropriate Reactions Generation
    Yu, Jun
    Zhao, Ji
    Xie, Guochen
    Chen, Fengxin
    Yu, Ye
    Peng, Liang
    Li, Minglei
    Dai, Zonghong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9561 - 9565
  • [2] COMPOSER STYLE-SPECIFIC SYMBOLIC MUSIC GENERATION USING VECTOR QUANTIZED DISCRETE DIFFUSION MODELS
    Zhang, Jincheng
    Fazekas, Gyorgy
    Saitis, Charalampos
    2024 IEEE 34TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, MLSP 2024, 2024,
  • [3] Vector Quantized Models for Planning
    Ozair, Sherjil
    Li, Yazhe
    Razavi, Ali
    Antonoglou, Ioannis
    van den Oord, Aaron
    Vinyals, Oriol
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [4] Diffusion bridges vector quantized variational autoencoders
    Cohen, Max
    Quispe, Guillaume
    Le Corff, Sylvain
    Ollion, Charles
    Moulines, Eric
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] VQ-CAD: Computer-Aided Design model generation with vector quantized diffusion
    Wang, Hanxiao
    Zhao, Mingyang
    Wang, Yiqun
    Quan, Weize
    Yan, Dong-Ming
    COMPUTER AIDED GEOMETRIC DESIGN, 2024, 111
  • [6] Robust Training of Vector Quantized Bottleneck Models
    Lacucki, Adrian
    Chorowski, Jan
    Sanchez, Guillaume
    Marxer, Ricard
    Chen, Nanxin
    Dolfing, Hans J. G. A.
    Khurana, Sameer
    Alumae, Tanel
    Laurent, Antoine
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [7] Learning Quantized Adaptive Conditions for Diffusion Models
    Lime, Yuchen
    Tian, Yuchan
    Yu, Lei
    Tang, Huaao
    Hui, Jie
    Fang, Xiangzhong
    Chen, Hanting
    COMPUTER VISION - ECCV 2024, PT LXXXI, 2025, 15139 : 358 - 374
  • [8] Vector-Quantized Prompt Learning for Paraphrase Generation
    Luo, Haotian
    Liu, Yixin
    Liu, Peidong
    Liut, Xianggen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 13389 - 13398
  • [9] Vector Quantized Diffusion Model for Text-to-Image Synthesis
    Gu, Shuyang
    Chen, Dong
    Bao, Jianmin
    Wen, Fang
    Zhang, Bo
    Chen, Dongdong
    Yuan, Lu
    Guo, Baining
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10686 - 10696
  • [10] Timestep-Aware Correction for Quantized Diffusion Models
    Yao, Yuzhe
    Tian, Feng
    Chen, Jun
    Lin, Haonan
    Dai, Guang
    Liu, Yong
    Wang, Jingdong
    COMPUTER VISION - ECCV 2024, PT LXVI, 2025, 15124 : 215 - 232