Patch2Self: Denoising Diffusion MRI with Self-Supervised Learning

被引:0
|
作者
Fadnavis, Shreyas [1 ]
Batson, Joshua [2 ]
Garyfallidis, Eleftherios [1 ]
机构
[1] Indiana Univ Bloomington, Indiana, PA 47405 USA
[2] CZ Biohub, San Francisco, CA USA
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion-weighted magnetic resonance imaging (DWI) is the only noninvasive method for quantifying microstructure and reconstructing white-matter pathways in the living human brain. Fluctuations from multiple sources create significant additive noise in DWI data which must be suppressed before subsequent microstructure analysis. We introduce a self-supervised learning method for denoising DWI data, Patch2Self, which uses the entire volume to learn a full-rank locally linear denoiser for that volume. By taking advantage of the oversampled q -space of DWI data, Patch2Self can separate structure from noise without requiring an explicit model for either. We demonstrate the effectiveness of Patch2Self via quantitative and qualitative improvements in microstructure modeling, tracking (via fiber bundle coherency) and model estimation relative to other unsupervised methods on real and simulated data.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Self-supervised learning for denoising of multidimensional MRI data
    Kang, Beomgu
    Lee, Wonil
    Seo, Hyunseok
    Heo, Hye-Young
    Park, Hyunwook
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 1980 - 1994
  • [2] SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI
    Tian, Qiyuan
    Li, Ziyu
    Fan, Qiuyun
    Polimeni, Jonathan R.
    Bilgic, Berkin
    Salat, David H.
    Huang, Susie Y.
    NEUROIMAGE, 2022, 253
  • [3] Diffraction denoising using self-supervised learning
    Markovic, Magdalena
    Malehmir, Reza
    Malehmir, Alireza
    GEOPHYSICAL PROSPECTING, 2023, 71 (07) : 1215 - 1225
  • [4] Denoising Diffusion Autoencoders are Unified Self-supervised Learners
    Xiang, Weilai
    Yang, Hongyu
    Huang, Di
    Wang, Yunhong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 15756 - 15766
  • [5] Self-supervised enhanced denoising diffusion for anomaly detection
    Li, Shu
    Yu, Jiong
    Lu, Yi
    Yang, Guangqi
    Du, Xusheng
    Liu, Su
    INFORMATION SCIENCES, 2024, 669
  • [6] Self2Self With Dropout: Learning Self-Supervised Denoising From Single Image
    Quan, Yuhui
    Chen, Mingqin
    Pang, Tongyao
    Ji, Hui
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1887 - 1895
  • [7] Enhancing diffusion-weighted prostate MRI through self-supervised denoising and evaluation
    Laura Pfaff
    Omar Darwish
    Fabian Wagner
    Mareike Thies
    Nastassia Vysotskaya
    Julian Hossbach
    Elisabeth Weiland
    Thomas Benkert
    Cornelius Eichner
    Dominik Nickel
    Tobias Wuerfl
    Andreas Maier
    Scientific Reports, 14 (1)
  • [8] Self-supervised PET Denoising
    Yie, Si Young
    Kang, Seung Kwan
    Hwang, Donghwi
    Lee, Jae Sung
    NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 54 (06) : 299 - 304
  • [9] Self-supervised PET Denoising
    Si Young Yie
    Seung Kwan Kang
    Donghwi Hwang
    Jae Sung Lee
    Nuclear Medicine and Molecular Imaging, 2020, 54 : 299 - 304
  • [10] Self-Supervised Learning for Action Recognition by Video Denoising
    Thi Thu Trang Phung
    Thi Hong Thu Ma
    Van Truong Nguyen
    Duc Quang Vu
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 76 - 81