共 50 条
Developing targeted therapies for neuroblastoma by dissecting the effects of metabolic reprogramming on tumor microenvironments and progression
被引:20
|作者:
Jin, Wenyi
[1
,2
,3
]
Zhang, Yubiao
[2
]
Zhao, Zhijie
[4
]
Gao, Mingyong
[1
]
机构:
[1] Wenzhou Med Univ, Affiliated Hosp Shanghai Univ 3, Wenzhou Peoples Hosp,Wenzhou Third Clin Inst Affil, Dept Orthoped, Wenzhou 325041, Peoples R China
[2] Renmin Hosp Wuhan Univ, Dept Orthoped, 99 Zhangzhidong Rd, Wuhan 430060, Peoples R China
[3] City Univ Hong Kong, Dept Biomed Sci, Kowloon Tong, Hong Kong 999077, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Dept Plast & Reconstruct Surg, 639 Zhi Zao Ju Rd, Shanghai 200011, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
metabolic reprogramming;
etoposide;
AZD7762;
neuroblastoma;
immune microenvironment;
PROMOTES NEUROBLASTOMA;
PREDICTION MODELS;
CELL METABOLISM;
DENDRITIC CELLS;
NEUROPEPTIDE-Y;
CANCER;
INHIBITION;
EXPRESSION;
OXIDATION;
HALLMARKS;
D O I:
10.7150/thno.93962
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification -guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning -based multi -step program, the synergic mechanisms of metabolic reprogramming -driven malignant progression of NB were elucidated at single -cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming -associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS -stratification were developed and further validated independently using pre -clinical models. Results: MPS -identified MPS -I NB showed significantly higher activity of metabolic reprogramming than MPS -II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 ( MYCN ), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS -I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS -I NB cells, more effectively than that of MPS -II cells. Conversely, etoposide had better therapeutic effects on MPS -II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in -vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS -I and MPS -II samples, respectively; thereby prolonging survival of tumor -bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS -I and MPS -II cells, respectively, through mitochondria -dependent pathways; and MPS -I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS -I NB progression was fueled by multiple metabolic reprogramming -driven factors including multidrug resistance, immunosuppressive and tumor -promoting inflammatory microenvironments. Immunologically, MPS -I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS -I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS -I NB cells manifested a distinct tumor -promoting developmental lineage and self -communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self -communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming -mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.
引用
收藏
页码:3439 / 3469
页数:31
相关论文