Co-precipitation mechanism of Cu-rich phase and κ-carbide precipitates in Fe-28Mn-10Al-1C-3Cu austenitic low-density steel

被引:1
|
作者
Ren, Xiqiang [1 ]
Qi, Yanfei [1 ]
Li, Yungang [1 ]
Zhou, Jingyi [1 ]
Gu, Jiahao [1 ]
机构
[1] North China Univ Sci & Technol, Coll Met & Energy, Tangshan 063210, Peoples R China
基金
中国国家自然科学基金;
关键词
Austenitic low -density steel; Particles; Nanosize; Microstructure; Co -precipitation mechanism; MN; STRENGTH;
D O I
10.1016/j.matlet.2024.136522
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The excellent comprehensive properties of Fe-28Mn-10Al-1C-3Cu austenitic low-density steel are related to its main precipitates of Cu-rich phase and kappa-carbide particles. The co-precipitation mechanism of Cu-rich phase and kappa-carbide particles in Fe-28Mn-10Al-1C-3Cu austenitic low-density steel are investigated. Adding Cu to Fe-28Mn10Al-1C austenitic low-density steel can promote the precipitation of kappa-carbide. The kappa-carbide can also promote the precipitation of Cu-rich phase with FCC structure. The kappa-carbide preferentially precipitate compared to Curich phase. The kappa-carbide and Cu-rich phase have a cube-on-cube orientation relationship with the austenitic matrix: [110]gamma//[1 1 0]kappa//[1 1 0]Cu and (1 1 1)gamma//(1 1 1)kappa//(1 1 1)Cu.
引用
收藏
页数:3
相关论文
共 27 条
  • [1] Tensile Deformation Behavior of Fe-28Mn-10Al-1C-3Cu Austenitic Lightweight Steel with Excellent Strength-Ductility Balance
    Ren, Xiqiang
    Qi, Yanfei
    Li, Yungang
    Gu, Jiahao
    JOM, 2025,
  • [2] An Enhanced Fe-28Mn-9Al-0.8C Lightweight Steel by Coprecipitation of Nanoscale Cu-Rich and κ-Carbide Particles
    Yang, Lei
    Li, Zhiming
    Li, Xiang
    Zhang, Yunhu
    Han, Ke
    Song, Changjiang
    Zhai, Qijie
    STEEL RESEARCH INTERNATIONAL, 2020, 91 (07)
  • [3] Kappa Carbide Precipitation in Duplex Fe-Al-Mn-Ni-C Low-Density Steel
    Burja, Jaka
    Batic, Barbara Setina
    Balasko, Tilen
    CRYSTALS, 2021, 11 (10)
  • [4] Mechanism of internal magnetic energy of Cu-rich phase precipitation in Fe84Cu15Mn1 alloy by phase field method
    Xin-An, Jiang
    Yu-Hong, Zhao
    Wen-Kui, Yang
    Xiao-Lin, Tian
    Hua, Hou
    ACTA PHYSICA SINICA, 2022, 71 (08)
  • [5] Controllable κ-carbide precipitation enables strength-ductility co-enhancement in Fe-Mn-Al-C low-density austenitic steel via grain boundary engineering
    Du, J. H.
    Chen, P.
    Zhang, F.
    Jia, Z. P.
    Shi, F.
    Li, X. W.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 227 : 26 - 31
  • [6] Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel
    Zhang, Jianlei
    Jiang, Yueshan
    Zheng, Weisen
    Liu, Yuxiang
    Addad, Ahmed
    Ji, Gang
    Song, Changjiang
    Zhai, Qijie
    SCRIPTA MATERIALIA, 2021, 199
  • [7] Fe-28Mn-10Al-1C-3Cu轻质钢的热变形行为及热加工图
    任喜强
    王程昊
    齐艳飞
    李运刚
    吴志杰
    中国冶金, 2024, 34 (04) : 88 - 95
  • [8] Effect of Nb on Microstructure and Mechanical Properties of Fe-28Mn-10Al-C Low-Density Steel
    Ma Tao
    Gao Jianxin
    Li Huirong
    Meng Xianghai
    Li Yungang
    RARE METAL MATERIALS AND ENGINEERING, 2021, 50 (03) : 860 - 866
  • [9] Effect of Nb on Microstructure and Mechanical Properties of Fe-28Mn-10Al-C Low-Density Steel
    Ma, Tao
    Gao, Jianxin
    Li, Huirong
    Meng, Xianghai
    Li, Yungang
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2021, 50 (03): : 860 - 866
  • [10] Precipitation transformation pathway and mechanical behavior of nanoprecipitation strengthened Fe-Mn-Al-C-Ni austenitic low-density steel
    An, Y. F.
    Chen, X. P.
    Mei, L.
    Ren, P.
    Wei, D.
    Cao, W. Q.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 174 : 157 - 167