The Gauss map of minimal surfaces in S2 x R

被引:0
|
作者
Domingos, Iury [1 ,2 ,3 ]
机构
[1] Univ Lorraine, CNRS, IECL, F-54000 Nancy, France
[2] Univ Fed Alagoas, Inst Matemat, BR-57072970 Maceio, AL, Brazil
[3] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
来源
关键词
Minimal surface; Gauss map; Conformal immersions; Homogenous; 3-manifolds; MEAN-CURVATURE SURFACES;
D O I
10.1007/s42985-022-00174-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the model of S(2)xR isometric to R-3\{0}, endowed with a metric conformally equivalent to the Euclidean metric of R-3, and we define a Gauss map for surfaces in this model likewise in the Euclidean 3-space. We show as a main result that any two minimal conformal immersions in S(2)x R with the same non-constant Gauss map differ by only two types of ambient isometries: either f = (Id, T), where T is a translation on R, or f=(A,T), where A denotes the antipodal map on S-2. This means that any minimal immersion is determined by its conformal structure and its Gauss map, up to those isometries.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Minimal Surfaces in S2 x S2
    Torralbo, Francisco
    Urbano, Francisco
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1132 - 1156
  • [2] AXIAL MINIMAL SURFACES IN S2 x R ARE HELICOIDAL
    Hoffman, David
    White, Brian
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2011, 87 (03) : 515 - 523
  • [3] Free boundaries surfaces and Saddle towers minimal surfaces in S2 x R
    Morabito, Filippo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (01) : 478 - 525
  • [4] Constant angle surfaces in S2 x R
    Dillen, Franki
    Fastenakels, Johan
    Van der Veken, Joeri
    Vrancken, Luc
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (02): : 89 - 96
  • [5] CLASSES OF WEINGARTEN SURFACES IN S2 x R
    Corro, Armando
    Pina, Romildo
    Souza, Marcelo
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (03): : 651 - 664
  • [6] GAUSS MAP OF MINIMAL-SURFACES
    VIKARUK, AY
    MATHEMATICAL NOTES, 1980, 28 (1-2) : 504 - 507
  • [7] Parabolicity and Gauss map of minimal surfaces
    López, FJ
    Pérez, J
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (04) : 1017 - 1026
  • [8] Stable minimal surfaces in R4 with degenerate Gauss map
    Shoda, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) : 1285 - 1293
  • [9] Minimal Isometric Immersions into S2 x R and H2 x R
    Daniel, Benoit
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (05) : 1425 - 1445
  • [10] FINITE TYPE MINIMAL ANNULI IN S2 x R
    Hauswirth, L.
    Kilian, M.
    Schmidt, M. U.
    ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (03) : 697 - 741