Antiviral potential of rosuvastatin and hesperidin in combination with favipiravir liposomal nanoformulations in targeting the main protease (M pro ) of SARS-CoV-2: Molecular docking, molecular dynamics and in-vitro studies

被引:2
|
作者
Elimam, Hanan [1 ]
El-Sawy, Hossam S. [2 ]
Fayed, Marwa A. A. [3 ]
Mahmoud, Sara H. [4 ]
Bakr, Riham O. [5 ]
Saleh, Rasha M. [6 ]
Mostafa, Ahmed [4 ]
Elshal, Mohamed F. [7 ]
机构
[1] Univ Sadat City, Dept Biochem, Fac Pharm, Sadat 32897, Egypt
[2] Egyptian Russian Univ, Fac Pharm, Dept Pharmaceut & Pharmaceut Technol, Badr City 11829, Cairo, Egypt
[3] Univ Sadat City, Fac Pharm, Dept Pharmacognosy, Sadat 32897, Egypt
[4] Natl Res Ctr, Ctr Sci Excellence Influenza Viruses, Giza 12622, Egypt
[5] October Univ Modern Sci & Arts MSA, Dept Pharmacognosy, Fac Pharm, Giza 11787, Egypt
[6] Mansoura Univ, Fac Vet Med, Physiol Dept, Mansoura 35516, Egypt
[7] Univ Sadat City, Genet Engn & Biotechnol Res Inst, Mol Biol Dept, Sadat City 32897, Egypt
关键词
SARS-CoV-2; COVID-19; Mpro; Liposomal nanovesicles; Molecular docking; Simulations; In vitro; NANOPARTICLES; NIOSOMES; ENCAPSULATION; SILICO;
D O I
10.1016/j.jddst.2024.105799
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Favipiravir (Fav) is a drug utilized to treat coronavirus disease 2019 (COVID-19) due its capacity to expedite the clearance of the SARS-CoV-2 virus through binding to its main protease (M pro ). However, the use of Fav has been associated with some adverse health effects. Meanwhile, numerous studies have highlighted the potential antiviral activities of specific phytochemicals and statins. Consequently, we thought to explore drug combination strategies involving certain statins and phytochemicals and their liposome nanoformulations either alone or with Fav, aiming to augment its efficacy and mitigate potential adverse effects. The molecular docking and molecular dynamic simulations analyses have revealed that hesperidin (HES) and rosuvastatin (ROS) have the best targeting potential for M pro protein out of 10 phytochemicals and 6 statin compounds. The selected compounds were elaborated alone or with FAV into six nanoformulations FAV, ROS, HES, FAV/ROS, FAV/HES, and FAV/ ROS/HES-loaded liposomes. Light and electron microscope evaluations confirmed the vesicular shape of all liposomal dispersions. The entrapment capacity and release extent from FAV/ROS/HES-loaded liposomes was the lowest compared to other nanoformulations. In vitro , the FAV/HES or FAV/ROS-loaded liposomes displayed the highest capacity to impede the replication of SARS-CoV-2 with IC50 of 0.738 and 3.28 mu g/mL, respectively. These results confirmed the potential of hesperidin and rosuvastatin as adjuvant medications with Favipiravir to combat COVID-19 and suggest the preference of the combinatory treatments. Finally, our findings provide a rational for further in -vivo studies to evaluate the potential activities of these drug combinations to mitigate the adverse events of favipiravir and to boost its SARS-CoV-2 clearance efficacy.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study
    Mahmud, Shafi
    Biswas, Suvro
    Paul, Gobindo Kumar
    Mita, Mohasana Akter
    Afrose, Shamima
    Hasan, Md Robiul
    Shimu, Mst Sharmin Sultana
    Uddin, Mohammad Abu Raihan
    Uddin, Md Salah
    Zaman, Shahriar
    Kibria, K. M. Kaderi
    Khan, Md Arif
    Bin Emran, Talha
    Abu Saleh, Md
    ARABIAN JOURNAL OF CHEMISTRY, 2021, 14 (09)
  • [2] Molecular dynamics and docking studies on potentially active natural phytochemicals for targeting SARS-CoV-2 main protease
    Sankaran, Sandhya Karakkadparambil
    Nair, Achuthsankar S.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (14): : 6459 - 6475
  • [3] Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: Molecular docking, molecular dynamics, and SAR studies
    Zaki, Ahmed A.
    Ashour, Ahmed
    Elhady, Sameh S.
    Darwish, Khaled M.
    Al-Karmalawy, Ahmed A.
    JOURNAL OF TRADITIONAL AND COMPLEMENTARY MEDICINE, 2022, 12 (01): : 16 - 34
  • [4] Identification of musk compounds as inhibitors of the main SARS-CoV-2 protease by molecular docking and molecular dynamics studies
    Belhassan, Assia
    Salgado, Guillermo
    Mendoza-Huizar, Luis humberto
    Zaki, Hanane
    Chtita, Samir
    Lakhlifi, Tahar
    Bouachrine, Mohammed
    Candia, Lorena gerli
    Cardona, Wilson
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2024, 89 (11) : 1447 - 1460
  • [5] Drug repurposing for SARS-CoV-2 main protease: Molecular docking and molecular dynamics investigations
    Omer, Samia E.
    Ibrahim, Tawasol M.
    Krar, Omer A.
    Ali, Amna M.
    Makki, Alaa A.
    Ibraheem, Walaa
    Alzain, Abdulrahim A.
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2022, 29
  • [6] Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking
    Yang, Xinbo
    Xing, Xianrong
    Liu, Yirui
    Zheng, Yuanjie
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [7] Insilico assessment of hesperidin on SARS-CoV-2 main protease and RNA polymerase: Molecular docking and dynamics simulation approach
    Molaakbari, Elaheh
    Aallae, Mohammad Reza
    Golestanifar, Fereshteh
    Garakani-Nejad, Zahra
    Khosravi, Ahmad
    Rezapour, Mohsen
    Malekshah, Rahime Eshaghi
    Ghomi, Mahsa
    Ren, Guogang
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2024, 39
  • [8] Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations
    Chirag N. Patel
    Siddhi P. Jani
    Dharmesh G. Jaiswal
    Sivakumar Prasanth Kumar
    Naman Mangukia
    Robin M. Parmar
    Rakesh M. Rawal
    Himanshu A. Pandya
    Scientific Reports, 11
  • [9] Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations
    Patel, Chirag N.
    Jani, Siddhi P.
    Jaiswal, Dharmesh G.
    Kumar, Sivakumar Prasanth
    Mangukia, Naman
    Parmar, Robin M.
    Rawal, Rakesh M.
    Pandya, Himanshu A.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Evaluation of the effects of chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation studies
    Tatar, Gizem
    Salmanli, Merve
    Dogru, Yakup
    Tuzuner, Tamer
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (17): : 7656 - 7665