LEAD: LiDAR Extender for Autonomous Driving

被引:0
|
作者
Zhang, Jianing [1 ,5 ]
Li, Wei [2 ]
Yang, Ruigang [2 ]
Dai, Qionghai [1 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] Inceptio Technol, Shanghai, Peoples R China
[3] Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing, Peoples R China
[4] Tsinghua Univ THUIBCS, Inst Brain & Cognit Sci, Beijing, Peoples R China
[5] Fudan Univ, Dept Elect Engn, Shanghai, Peoples R China
来源
关键词
3D perception; Autonomous Driving; LiDAR Extender; DEPTH;
D O I
10.1007/978-981-99-8850-1_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D perception using sensors under vehicle industrial standards is the rigid demand in autonomous driving. MEMS LiDAR emerges with irresistible trend due to its lower cost, more robust, and meeting the mass-production standards. However, it suffers small field of view (FoV), slowing down the step of its population. In this paper, we propose LEAD, i.e., LiDAR Extender for Autonomous Driving, to extend the MEMS LiDAR by coupled image w.r.t both FoV and range. We propose a multi-stage propagation strategy based on depth distributions and uncertainty map, which shows effective propagation ability. Moreover, our depth outpainting/propagation network follows a teacher-student training fashion, which transfers depth estimation ability to depth completion network without any scale error passed. To validate the LiDAR extension quality, we utilize a high-precise laser scanner to generate a ground-truth dataset. Quantitative and qualitative evaluations show that our scheme outperforms SOTAs with a large margin.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 50 条
  • [1] Lidar sensors for autonomous driving
    Schleuning, David
    Droz, Pierre-yves
    [J]. HIGH-POWER DIODE LASER TECHNOLOGY XVIII, 2020, 11262
  • [2] Flash LiDAR for Autonomous Driving
    Lin, Chih-Ping
    [J]. 2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [3] Augmented LiDAR Simulator for Autonomous Driving
    Fang, Jin
    Zhou, Dingfu
    Yan, Feilong
    Zhao, Tongtong
    Zhang, Feihu
    Ma, Yu
    Wang, Liang
    Yang, Ruigang
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 1931 - 1938
  • [4] Efficient LiDAR Odometry for Autonomous Driving
    Zheng, Xin
    Zhu, Jianke
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 8458 - 8465
  • [5] LiDAR Panoptic Segmentation for Autonomous Driving
    Milioto, Andres
    Behley, Jens
    McCool, Chris
    Stachniss, Cyrill
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8505 - 8512
  • [6] MEMS-based lidar for autonomous driving
    Yoo, H. W.
    Druml, N.
    Brunner, D.
    Schwarzl, C.
    Thurner, T.
    Hennecke, M.
    Schitter, G.
    [J]. ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2018, 135 (06): : 408 - 415
  • [7] Evaluating the Limits of a LiDAR for an Autonomous Driving Localization
    de Paula Veronese, Lucas
    Auat-Cheein, Fernando
    Mutz, Filipe
    Oliveira-Santos, Thiago
    Guivant, Jose E.
    de Aguiar, Edilson
    Badue, Claudine
    Ferreira De Souza, Alberto
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (03) : 1449 - 1458
  • [8] Temporal LiDAR Frame Prediction for Autonomous Driving
    Deng, David
    Zakhor, Avideh
    [J]. 2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 829 - 837
  • [9] Robust LIDAR Localization for Autonomous Driving in Rain
    Zhang, Chen
    Ang, Marcelo H., Jr.
    Rus, Daniela
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 3409 - 3415
  • [10] LiDAR Degradation Quantification for Autonomous Driving in Rain
    Zhang, Chen
    Huang, Zefan
    Ang, Marcelo H. Jr Jr
    Rus, Daniela
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 3458 - 3464