On the energetic particle-induced geodesic acoustic modes with finite-orbit-width effects

被引:5
|
作者
Chen, Zhe [1 ,2 ]
Li, Yixiang [1 ,2 ]
Ren, Haijun [1 ,2 ,3 ]
Roach, Colin M. [2 ]
机构
[1] Univ Sci & Technol China, Sch Phys Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Dept Engn & Appl Phys, Hefei 230026, Anhui, Peoples R China
[3] Culham Ctr Fus Energy, Abingdon OX14 3DB, England
基金
中国国家自然科学基金;
关键词
finite orbit width; energetic particle; geodesic acoustic mode; instability; tokamak; ZONAL FLOWS;
D O I
10.1088/1741-4326/ad573c
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This study presents an analytical investigation of energetic particle-induced geodesic acoustic modes (EGAMs) within a gyro-kinetic model, incorporating finite-orbit-width (FOW) effects up to the second order. The inclusion of second-order FOW effects introduces two distinct types of energetic particle-wave resonances, occurring at omega = omega(h)(t) and omega = 2 omega(h)(t) , respectively, where omega th denotes the transit frequency of energetic particles (EPs). It is found that two unstable EGAM branches coexist: a low frequency branch (LFB) characterized by 0 < omega(LFB )< omega(h)(t,max) , and a high frequency branch (HFB) marked by omega(h )(t,max)<omega(HFB )< 2 omega(h)(t,max). The instability of LFB primarily arises from the resonance omega = omega(h)(t) , mainly introduced by first-order FOW effects. As a result, the instability of LFB always exists regardless of the presence or absence of second-order FOW effects, and is barely modified by these effects. In contrast, the instability of HFB is exclusively attributed to the resonance omega = 2 omega(h)(t) induced by second-order FOW effects. Consequently, the HFB exhibits instability in the presence of these effects.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Finite-Orbit-Width Effects on Energetic-Particle-Induced Geodesic Acoustic Mode*)
    Japan Atomic Energy Agency, 178-4-4 Wakashiba, Kashiwa
    Chiba
    277-0871, Japan
    Plasma Fusion Res., (1-4):
  • [2] Plasma elongation effects on energetic particle-induced geodesic acoustic modes in tokamaks
    Chen, Zhe
    Ren, Haijun
    Roach, Colin
    NUCLEAR FUSION, 2024, 64 (03)
  • [3] Finite-orbit-width effects on the geodesic acoustic mode in the toroidally rotating tokamak plasma
    Ren, H.
    PHYSICS OF PLASMAS, 2017, 24 (05)
  • [4] Energetic particle-induced geodesic acoustic modes on DIII-D
    Lin, D. J.
    Heidbrink, W. W.
    Crocker, N. A.
    Du, X. D.
    Nazikian, R.
    Van Zeeland, M. A.
    Barada, K.
    NUCLEAR FUSION, 2022, 62 (11)
  • [5] Multiple geodesic acoustic modes destabilization in the presence of energetic particles with finite orbit width effects
    Lee, Young-Hoon
    Lee, Jungpyo
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (03)
  • [6] Effect of elongation on energetic particle-induced geodesic acoustic mode
    Di Siena, A.
    Biancalani, A.
    Goerler, T.
    Doerk, H.
    Novikau, I.
    Lauber, P.
    Bottino, A.
    Poli, E.
    NUCLEAR FUSION, 2018, 58 (10)
  • [7] Particle transport due to energetic-particle-driven geodesic acoustic modes
    Zarzoso, D.
    del-Castillo-Negrete, D.
    Escande, D. F.
    Sarazin, Y.
    Garbet, X.
    Grandgirard, V.
    Passeron, C.
    Latu, G.
    Benkadda, S.
    NUCLEAR FUSION, 2018, 58 (10)
  • [8] Energetic-Particle-Induced Geodesic Acoustic Mode
    Fu, G. Y.
    PHYSICAL REVIEW LETTERS, 2008, 101 (18)
  • [9] Impact of Energetic-Particle-Driven Geodesic Acoustic Modes on Turbulence
    Zarzoso, D.
    Sarazin, Y.
    Garbet, X.
    Dumont, R.
    Strugarek, A.
    Abiteboul, J.
    Cartier-Michaud, T.
    Dif-Pradalier, G.
    Ghendrih, Ph
    Grandgirard, V.
    Latu, G.
    Passeron, C.
    Thomine, O.
    PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [10] Beam ion losses due to energetic particle geodesic acoustic modes
    Fisher, R. K.
    Pace, D. C.
    Kramer, G. J.
    Van Zeeland, M. A.
    Nazikian, R.
    Heidbrink, W. W.
    Garcia-Munoz, M.
    NUCLEAR FUSION, 2012, 52 (12)