No-go theorems for r-matrices in symplectic geometry

被引:0
|
作者
Schnitzer, Jonas [1 ]
机构
[1] Albert Ludwigs Univ Freiburg, Math Inst, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
来源
关键词
symplectic geometry; Lie algebras; Yang -Baxter equation; DEFORMATION; POISSON; QUANTIZATION;
D O I
10.3934/cam.2024021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If a triangular Lie algebra acts on a smooth manifold, it induces a Poisson bracket on it. In case this Poisson structure is actually symplectic, we show that this already implies the existence of a flat connection on any vector bundle over the manifold the Lie algebra acts on, in particular the tangent bundle. This implies, among other things, that CPn and higher genus Pretzel surfaces cannot carry symplectic structures that are induced by triangular Lie algebras.
引用
收藏
页码:448 / 456
页数:9
相关论文
共 50 条
  • [1] Quantization of Symplectic Dynamical r-Matrices and the Quantum Composition Formula
    Anton Alekseev
    Damien Calaque
    Communications in Mathematical Physics, 2007, 273 : 119 - 136
  • [2] Quantization of symplectic dynamical r-matrices and the quantum composition formula
    Alekseev, Anton
    Calaque, Damien
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (01) : 119 - 136
  • [3] No-go theorems for R symmetries in four-dimensional GUTs
    Fallbacher, Maximilian
    Ratz, Michael
    Vaudrevange, Patrick K. S.
    PHYSICS LETTERS B, 2011, 705 (05) : 503 - 506
  • [4] NO-GO THEOREMS FOR DUAL MODELS
    BALACHAN.
    CHANG, LN
    FRAMPTON, PH
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1971, A 1 (03): : 545 - +
  • [5] NO-GO THEOREMS FOR THE MINIMIZATION OF POTENTIALS
    CHANG, D
    KUMAR, A
    PHYSICAL REVIEW D, 1985, 31 (10): : 2698 - 2700
  • [6] No-Go Theorems for Distributive Laws
    Zwart, Maaike
    Marsden, Dan
    2019 34TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2019,
  • [7] Contextualism, locality and the no-go theorems
    Fine, A
    NEW DEVELOPMENTS ON FUNDAMENTAL PROBLEMS IN QUANTUM PHYSICS, 1997, 81 : 125 - 132
  • [8] Quantum No-Go Theorems and Consciousness
    Georgiev, Danko
    AXIOMATHES, 2013, 23 (04): : 683 - 695
  • [9] NO-GO THEOREMS FOR DISTRIBUTIVE LAWS
    Zwart, Maaike
    Marsden, Dan
    LOGICAL METHODS IN COMPUTER SCIENCE, 2022, 18 (01)
  • [10] Quantum No-Go Theorems and Consciousness
    Danko Georgiev
    Axiomathes, 2013, 23 : 683 - 695