Dynamic Real-Time Spatio-Temporal Acquisition and Rendering in Adverse Environments

被引:0
|
作者
Dutta, Somnath [1 ]
Ganovelli, Fabio [1 ]
Cignoni, Paolo [1 ]
机构
[1] Italian Natl Res Council CNR, Inst Informat Sci & Technol Alessandro Faedo ISTI, Via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
关键词
Multi-sensor calibration; Real-time rendering; Virtual reality; CALIBRATION; NAVIGATION; CAMERA;
D O I
10.1007/978-3-031-60277-1_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces NausicaaVR, a novel hardware/software system designed to acquire and render intricate 3D environments, with a particular emphasis on challenging and adverse contexts. In doing so, we navigate the complex landscape of system calibration and rendering, while seamlessly integrating data from multiple sensors. We explore the distinctive challenges inherent in adverse environments, juxtaposing them against conventional automotive scenarios. Through a comprehensive exposition of all constituent elements of the NausicaaVR system, we offer transparent insights into the encountered obstacles and the intricate decisions that were instrumental in surmounting them. This study seeks to illuminate the developmental trajectory of NausicaaVR and analogous systems, thereby furnishing a repository of knowledge and understanding poised to benefit future research and the pragmatic implementation of such cutting-edge technologies.
引用
收藏
页码:34 / 53
页数:20
相关论文
共 50 条
  • [1] Real-time spatio-temporal analysis of dynamic scenes
    Tobias Warden
    Ubbo Visser
    [J]. Knowledge and Information Systems, 2012, 32 : 243 - 279
  • [2] Real-time spatio-temporal analysis of dynamic scenes
    Warden, Tobias
    Visser, Ubbo
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 32 (02) : 243 - 279
  • [3] FAST: Filter-Adapted Spatio-Temporal Sampling for Real-Time Rendering
    Donnelly, William
    Wolfe, Alan
    Butepage, Judith
    Valdes, Jon
    [J]. PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2024, 7 (01)
  • [4] Distributed and parallel processing for real-time and dynamic spatio-temporal graph
    Fang, Junhua
    Ding, Jiafeng
    Zhao, Pengpeng
    Xu, Jiajie
    Liu, An
    Li, Zhixu
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (02): : 905 - 926
  • [5] Distributed and parallel processing for real-time and dynamic spatio-temporal graph
    Junhua Fang
    Jiafeng Ding
    Pengpeng Zhao
    Jiajie Xu
    An Liu
    Zhixu Li
    [J]. World Wide Web, 2020, 23 : 905 - 926
  • [6] Spatio-temporal view interpolation in real-time
    Radtke, T
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2003, PTS 1-3, 2003, 5150 : 1939 - 1946
  • [7] Covid-19 Dynamic Monitoring and Real-Time Spatio-Temporal Forecasting
    da Silva, Cecilia Cordeiro
    de Lima, Clarisse Lins
    da Silva, Ana Clara Gomes
    Silva, Eduardo Luiz
    Marques, Gabriel Souza
    de Araujo, Lucas Job Brito
    Albuquerque Junior, Luiz Antonio
    de Souza, Samuel Barbosa Jatoba
    de Santana, Maira Araujo
    Gomes, Juliana Carneiro
    Barbosa, Valter Augusto de Freitas
    Musah, Anwar
    Kostkova, Patty
    dos Santos, Wellington Pinheiro
    da Silva Filho, Abel Guilhermino
    [J]. FRONTIERS IN PUBLIC HEALTH, 2021, 9
  • [8] Spatio-temporal DenseNet for real-time intent prediction of pedestrians in urban traffic environments
    Khaled Saleh
    Mohammed Hossny
    Saeid Nahavandi
    [J]. NEUROCOMPUTING, 2020, 386 : 317 - 324
  • [9] Mars: Real-time Spatio-temporal Queries on Microblogs
    Magdy, Amr
    Aly, Ahmed M.
    Mokbel, Mohamed F.
    Elnikety, Sameh
    He, Yuxiong
    Nath, Suman
    [J]. 2014 IEEE 30TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2014, : 1238 - 1241
  • [10] Spatio-temporal modeling for real-time ozone forecasting
    Paci, Lucia
    Gelfand, Alan E.
    Holland, David M.
    [J]. SPATIAL STATISTICS, 2013, 4 : 79 - 93