Evaluation of Scale-dependent Kurtosis with HelioSwarm

被引:0
|
作者
Pecora, Francesco [1 ]
Pucci, Francesco [2 ]
Malara, Francesco [3 ]
Klein, Kristopher G. [4 ]
Marcucci, Maria Federica [5 ]
Retino, Alessandro [6 ]
Matthaeus, William [1 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[2] CNR, ISTP, Ist Sci & Tecnol Plasmi, I-70126 Bari, Italy
[3] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, CS, Italy
[4] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[5] INAF Ist Astrofis & Planetol Spaziali, IAPS, I-00133 Rome, Italy
[6] CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France
关键词
SOLAR-WIND TURBULENCE; MAGNETIC-FIELD; MULTIFRACTAL STRUCTURE; COHERENT STRUCTURES; INTERMITTENT TURBULENCE; RECURRENT STREAMS; PARTIAL-VARIANCE; LOCAL-STRUCTURE; CURRENT SHEETS; SPACE PLASMAS;
D O I
10.3847/2041-8213/ad5fff
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Plasma turbulence involves complex, nonlinear interactions of electromagnetic fields and charged particles across multiple scales. Studying these phenomena in space plasmas, like the solar wind, is facilitated by the intrinsic scale separations and the availability of in situ spacecraft observations. However, the single-point or single-scale configurations of current spacecraft limit our understanding of many properties of the turbulent solar wind. To overcome these limitations, multipoint measurements spanning a range of characteristic scales are essential. This Letter prepares for the enhanced measurement capabilities of upcoming multispacecraft missions by demonstrating that higher-order statistics, specifically kurtosis, as a baseline for intermittency can be accurately measured. Using synthetic turbulent fields with adjustable intermittency levels, we achieve scale separations analogous to those in the solar wind and apply these techniques to the planned trajectories of the HelioSwarm mission. This approach promises significant advancements in our understanding of plasma turbulence.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] INVESTIGATION OF INTERMITTENCY IN MAGNETOHYDRODYNAMICS AND SOLAR WIND TURBULENCE: SCALE-DEPENDENT KURTOSIS
    Wan, Minping
    Osman, Kareem T.
    Matthaeus, William H.
    Oughton, Sean
    [J]. ASTROPHYSICAL JOURNAL, 2012, 744 (02):
  • [2] Scale-dependent halo bias from scale-dependent growth
    Parfrey, Kyle
    Hui, Lam
    Sheth, Ravi K.
    [J]. PHYSICAL REVIEW D, 2011, 83 (06):
  • [3] Scale-dependent automatic shifts in brand evaluation standards
    Dimofte, Claudiu V.
    Johansson, Johny K.
    [J]. JOURNAL OF CONSUMER PSYCHOLOGY, 2009, 19 (02) : 158 - 170
  • [4] Scale-dependent grasp
    Kaneko, M
    Shirai, T
    Tsuji, T
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2000, 30 (06): : 806 - 816
  • [5] Scale-dependent behavior of scale equations
    Kim, Pilwon
    [J]. CHAOS, 2009, 19 (03)
  • [6] Stereo dynamics are not scale-dependent
    Hess, RF
    Wilcox, LM
    [J]. VISION RESEARCH, 2006, 46 (12) : 1911 - 1923
  • [7] SUPERSYMMETRY AND SCALE-DEPENDENT ANALYSIS
    IKEDA, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (01): : 249 - 258
  • [8] Scale-Dependent Kurtosis of Magnetic Field Fluctuations in the Solar Wind: A Multi-Scale Study With Cluster 2003-2015
    Roberts, O. W.
    Alexandrova, O.
    Sorriso-Valvo, L.
    Voeroes, Z.
    Nakamura, R.
    Fischer, D.
    Varsani, A.
    Escoubet, C. Philippe
    Volwerk, M.
    Canu, P.
    Lion, S.
    Yearby, K.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (09)
  • [9] Scale-dependent stochastic quantization
    Altaisky, Mikhail
    [J]. Frontiers of Fundamental Physics, 2006, : 155 - 161
  • [10] Scale-dependent landscape epidemiology
    Skelsey, P.
    [J]. PHYTOPATHOLOGY, 2011, 101 (06) : S167 - S167