Automated rating of background parenchymal enhancement in MRI of extremely dense breasts without compromising the association with breast cancer in the DENSE trial

被引:0
|
作者
Wang, Hui [1 ]
van der Velden, Bas H. M. [1 ]
Verburg, Erik [1 ]
Bakker, Marije F. [2 ]
Pijnappel, Ruud M. [3 ]
Veldhuis, Wouter B. [3 ]
van Gils, Carla H. [2 ]
Gilhuijs, Kenneth G. A. [1 ,4 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
[2] Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[3] Univ Med Ctr Utrecht, Dept Radiol, Utrecht, Netherlands
[4] Univ Med Ctr Utrecht, Q-02-4-45,POB 85500, NL-3508 GA Utrecht, Netherlands
关键词
Background Parenchymal Enhancement; Breast MRI; Machine learning; Dense breasts; NEOADJUVANT CHEMOTHERAPY; MAMMOGRAPHIC DENSITY; WOMEN;
D O I
10.1016/j.ejrad.2024.111442
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: Background parenchymal enhancement (BPE) on dynamic contrast-enhanced MRI (DCE-MRI) as rated by radiologists is subject to inter- and intrareader variability. We aim to automate BPE category from DCE-MRI. Methods: This study represents a secondary analysis of the Dense Tissue and Early Breast Neoplasm Screening trial. 4553 women with extremely dense breasts who received supplemental breast MRI screening in eight hospitals were included. Minimal, mild, moderate and marked BPE rated by radiologists were used as reference. Fifteen quantitative MRI features of the fibroglandular tissue were extracted to predict BPE using Random Forest, Na & iuml;ve Bayes, and KNN classifiers. Majority voting was used to combine the predictions. Internal-external validation was used for training and validation. The inverse-variance weighted mean accuracy was used to express mean performance across the eight hospitals. Cox regression was used to verify non inferiority of the association between automated rating and breast cancer occurrence compared to the association for manual rating. Results: The accuracy of majority voting ranged between 0.56 and 0.84 across the eight hospitals. The weighted mean prediction accuracy for the four BPE categories was 0.76. The hazard ratio (HR) of BPE for breast cancer occurrence was comparable between automated rating and manual rating (HR = 2.12 versus HR = 1.97, P = 0.65 for mild/moderate/marked BPE relative to minimal BPE). Conclusion: It is feasible to rate BPE automatically in DCE-MRI of women with extremely dense breasts without compromising the underlying association between BPE and breast cancer occurrence. The accuracy for minimal BPE is superior to that for other BPE categories.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Breast MRI to Screen Women With Extremely Dense Breasts
    Sitges, Carla
    Mann, Ritse M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2025,
  • [2] Supplemental Breast MRI for Women with Extremely Dense Breasts: Results of the Second Screening Round of the DENSE Trial
    Veenhuizen, Stefanie G. A.
    de Lange, Stephanie, V
    Bakker, Marije F.
    Pijnappel, Ruud M.
    Mann, Ritse M.
    Monninkhof, Evelyn M.
    Emaus, Marleen J.
    De Koekkoek-Doll, Petra K.
    Bisschops, Robertus H. C.
    Lobbes, Marc B., I
    de Jong, Mathijn D. F.
    Duvivier, Katya M.
    Veltman, Jeroen
    Karssemeijer, Nico
    de Koning, Harry J.
    van Diest, Paul J.
    Mali, Willem P. T. M.
    van den Bosch, Maurice A. A. J.
    van Gils, Carla H.
    Veldhuis, Wouter B.
    RADIOLOGY, 2021, 299 (02) : 278 - 286
  • [3] Re-attendance in supplemental breast MRI screening rounds of the DENSE trial for women with extremely dense breasts
    Veenhuizen, Stefanie G. A.
    van Grinsven, Sophie E. L.
    Laseur, Isabelle L.
    Bakker, Marije F.
    Monninkhof, Evelyn M.
    de Lange, Stephanie V.
    Pijnappel, Ruud M.
    Mann, Ritse M.
    Lobbes, Marc B. I.
    Duvivier, Katya M.
    de Jong, Mathijn D. F.
    Loo, Claudette E.
    Karssemeijer, Nico
    van Diest, Paul J.
    Veldhuis, Wouter B.
    van Gils, Carla H.
    van Gils, C. H.
    Bakker, M. F.
    van Grinsven, S. E. L.
    de Lange, S., V
    Veenhuizen, S. G. A.
    Veldhuis, W. B.
    Pijnappel, R. M.
    Emaus, M. J.
    Monninkhof, E. M.
    Fernandez-Gallardo, M. A.
    van den Bosch, M. A. A. J.
    van Diest, P. J.
    Mann, R. M.
    Mus, R.
    Imhof-Tas, M.
    Karssemeijer, N.
    Loo, C. E.
    de Koekkoek-Doll, P. K.
    Winter-Warnars, H. A. O.
    Bisschops, R. H. C.
    Kock, M. C. J. M.
    Storm, R. K.
    van der Valk, P. H. M.
    Lobbes, M. B., I
    Gommers, S.
    Lobbes, M. B., I
    de Jong, M. D. F.
    Rutten, M. J. C. M.
    Duvivier, K. M.
    de Graaf, P.
    Veltman, J.
    Bourez, R. L. J. H.
    de Koning, H. J.
    EUROPEAN RADIOLOGY, 2024, 34 (10) : 6334 - 6347
  • [4] Utilization of Screening Breast MRI in Women with Extremely Dense Breasts
    LoDuca, Thomas P.
    Strigel, Roberta M.
    Bozzuto, Laura M.
    CURRENT BREAST CANCER REPORTS, 2024, 16 (01) : 53 - 60
  • [5] Utilization of Screening Breast MRI in Women with Extremely Dense Breasts
    Thomas P. LoDuca
    Roberta M. Strigel
    Laura M. Bozzuto
    Current Breast Cancer Reports, 2024, 16 : 53 - 60
  • [6] Automated Background Parenchymal Enhancement Measurements at MRI to Predict Breast Cancer Risk
    Bokacheva, Louisa
    RADIOLOGY, 2023, 308 (03)
  • [7] Association between Background Parenchymal Enhancement of Breast MRI and BIRADS Rating Change in the Subsequent Screening
    Aghaei, Faranak
    Mirniaharikandehei, Seyedehnafiseh
    Hollingsworth, Alan B.
    Stoug, Rebecca G.
    Pearce, Melanie
    Liu, Hong
    Zheng, Bin
    MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
  • [8] Correlation of background parenchymal enhancement on breast MRI with breast cancer
    Sallam, H.
    Lenga, L.
    Solbach, C.
    Becker, S.
    Vogl, T. J.
    CLINICAL RADIOLOGY, 2023, 78 (09) : e654 - e659
  • [9] MRI Background Parenchymal Enhancement Is Not Associated with Breast Cancer
    Bennani-Baiti, Barbara
    Dietzel, Matthias
    Baltzer, Pascal Andreas
    PLOS ONE, 2016, 11 (07):
  • [10] Computerized Detection of Breast Cancer On Automated Breast Ultrasound for Women with Dense Breasts
    Drukker, K.
    Sennett, C.
    Giger, M.
    MEDICAL PHYSICS, 2013, 40 (06)