Effects of graphene addition on the mechanical, friction and corrosion properties of laser powder bed fusion 316L stainless steel

被引:0
|
作者
Liu, Mengqi [1 ]
Jiang, Chaorui [1 ]
Kang, Zhongxiong [1 ]
Liu, Xin [1 ]
Zhang, Zhihui [1 ]
Ren, Luquan [1 ]
机构
[1] Jilin Univ, Key Lab Bion Engn, Minist Educ, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
LPBF-316L; Graphene composite; Corrosion resistance; Mechanical property; Friction behavior; METAL-MATRIX COMPOSITES; TRIBOLOGICAL BEHAVIOR; CARBON NANOTUBES; ALLOY; MICROSTRUCTURE; DEPOSITION; RESISTANCE; CARBIDE;
D O I
10.1016/j.jmrt.2024.06.061
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion of 316 L (LPBF-316 L) has been known to exhibit high ductility but low strength, along with strong corrosion resistance and weak anti -friction properties. Graphene is commonly utilized as a reinforcement phase in metals fabricated through LPBF, as this process helps reduce the tendency of graphene to agglomerate. Therefore, it is crucial to investigate the impact of incorporating graphene into the LPBF-316 L alloy, aiming to enhance toughening and anti -friction properties while maintaining the original corrosion resistance. Various concentrations of graphene were incorporated into 316 L powder and processed using LPBF. The study examined the impact of graphene concentration on the electrochemical, mechanical, and friction properties of the resulting composites. The study revealed a significant reduction in corrosion current from 8.05 +/- 0.6 x 10 -7 A/cm 2 to 6.61 +/- 0.8 x 10 -8 A/cm 2 . The 15 -day immersion experiment further validated that the incorporation of graphene contributed to enhancing the stability of corrosion resistance. Additionally, the presence of graphene led to improved strength and ductility in LPBF-316 L through grain refinement and precipitation. Notably, samples containing 0.2 wt% graphene exhibited a tensile fracture strength of 927.4 MPa and ductility of 54.75%. In addition, the compressive fracture strength of 2342.8 MPa, both surpassing that of LPBF316 L. Furthermore, the study investigated the impact of graphene content on the friction of LPBF-316 L, revealing that graphene addition increased matrix hardness, reduced COF, and enhanced wear resistance. Overall, the findings suggest that graphene serves as an effective reinforcing agent for 316 L stainless steel matrix composites, enhancing mechanical properties, friction resistance, and wear resistance while preserving original corrosion resistance.
引用
收藏
页码:170 / 186
页数:17
相关论文
共 50 条
  • [1] Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusion
    Ura-Binczyk, E.
    Dobkowska, A.
    Bazarnik, P.
    Ciftci, J.
    Krawczynska, A.
    Chrominski, W.
    Wejrzanowski, T.
    Molak, R.
    Sitek, R.
    Plocinski, T.
    Jaroszewicz, J.
    Mizera, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860
  • [2] Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel
    Pitrmuc, Zdenek
    Simota, Jan
    Beranek, Libor
    Mikes, Petr
    Andronov, Vladislav
    Sommer, Jiri
    Holesovsky, Frantisek
    MATERIALS, 2022, 15 (02)
  • [3] Tailoring the microstructural and mechanical properties of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Cheng-song
    Wang, Yong
    Zhang, Hua
    Li, Lie
    Lu, Yuan-yuan
    Xiong, Li
    Ni, Hong-wei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 7389 - 7405
  • [4] Mechanical Properties of 316L Stainless Steel Porous Structure Formed by Laser Powder Bed Fusion
    Liu Yude
    Guo Jia
    Shi Wentian
    Han Yufan
    Zhou Yusheng
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (08):
  • [5] Corrosion Fatigue Characteristics of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Gnanasekaran, Balachander
    Song, Jie
    Vasudevan, Vijay
    Fu, Yao
    METALS, 2021, 11 (07)
  • [6] Fabrication of 316L stainless steel with TiN addition by vacuum laser powder bed fusion
    Srisawadi, Sasitorn
    Tanprayoon, Dhritti
    Sato, Yuji
    Tsukamoto, Masahiro
    Suga, Tetsuo
    OPTICS AND LASER TECHNOLOGY, 2020, 126 (126):
  • [7] Effects of crystallographic orientation on the corrosion behavior of stainless steel 316L manufactured by laser powder bed fusion
    Trisnanto, Satria Robi
    Wang, Xianglong
    Brochu, Mathieu
    Omanovic, Sasha
    CORROSION SCIENCE, 2022, 196
  • [8] Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L
    Crisafulli, Davide
    Fintova, Stanislava
    Santonocito, Dario
    D'Andrea, Danilo
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 131
  • [9] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [10] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    Materials Science and Engineering: A, 2021, 802