Learning Temporal Variations for 4D Point Cloud Segmentation

被引:0
|
作者
Shi, Hanyu [1 ]
Wei, Jiacheng [1 ]
Wang, Hao [1 ]
Liu, Fayao [2 ]
Lin, Guosheng [1 ]
机构
[1] Nanyang Technol Univ, Singapore, Singapore
[2] ASTAR, Inst Infocomm Res, Singapore, Singapore
关键词
4D point cloud; Semantic segmentation; Scene understanding;
D O I
10.1007/s11263-024-02149-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
LiDAR-based 3D scene perception is a fundamental and important task for autonomous driving. Most state-of-the-art methods on LiDAR-based 3D recognition tasks focus on single-frame 3D point cloud data, ignoring temporal information. We argue that the temporal information across the frames provides crucial knowledge for 3D scene perceptions, especially in the driving scenario. In this paper, we focus on spatial and temporal variations to better explore temporal information across 3D frames. We design a temporal variation-aware interpolation module and a temporal voxel-point refinement module to capture the temporal variation in the 4D point cloud. The temporal variation-aware interpolation generates local features from the previous and current frames by capturing spatial coherence and temporal variation information. The temporal voxel-point refinement module builds a temporal graph on the 3D point cloud sequences and captures the temporal variation with a graph convolution module, transforming coarse voxel-level predictions into fine point-level predictions. With our proposed modules, we achieve superior performances on SemanticKITTI, SemantiPOSS and NuScenes.
引用
收藏
页码:5603 / 5617
页数:15
相关论文
共 50 条
  • [1] LeaF: Learning Frames for 4D Point Cloud Sequence Understanding
    Liu, Yunze
    Chen, Junyu
    Zhang, Zekai
    Huang, Jingwei
    Yi, Li
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 604 - 613
  • [2] Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos
    Fan, Hehe
    Yang, Yi
    Kankanhalli, Mohan
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14199 - 14208
  • [3] A 4D strong spatio-temporal feature learning network for behavior recognition of point cloud sequences
    You, Kaijun
    Hou, Zhenjie
    Liang, Jiuzhen
    Lin, En
    Shi, Haiyong
    Zhong, Zhuokun
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (23) : 63193 - 63211
  • [4] 4D deformable models with temporal constraints: application to 4D cardiac image segmentation
    Montagnat, J
    Delingette, H
    [J]. MEDICAL IMAGE ANALYSIS, 2005, 9 (01) : 87 - 100
  • [5] Weakly Supervised Segmentation on Outdoor 4D point clouds with Temporal Matching and Spatial Graph Propagation
    Shi, Hanyu
    Wei, Jiacheng
    Li, Ruibo
    Liu, Fayao
    Lin, Guosheng
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11830 - 11839
  • [6] SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds
    Shi, Hanyu
    Lin, Guosheng
    Wang, Hao
    Hung, Tzu-Yi
    Wang, Zhenhua
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4573 - 4582
  • [7] Self-supervised 4D Spatio-temporal Feature Learning via Order Prediction of Sequential Point Cloud Clips
    Wang, Haiyan
    Yang, Liang
    Rong, Xuejian
    Feng, Jinglun
    Tian, Yingli
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3761 - 3770
  • [8] Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting
    Khurana, Tarasha
    Hu, Peiyun
    Held, David
    Ramanan, Deva
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1116 - 1124
  • [9] Color Point Cloud Registration with 4D ICP Algorithm
    Men, Hao
    Gebre, Biruk
    Pochiraju, Kishore
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011, : 1511 - 1516
  • [10] Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation
    Gur, Shir
    Wolf, Lior
    Golgher, Lior
    Blinder, Pablo
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020, 2020, : 331 - 342