InSAR-DLPU: A benchmark dataset for deep learning-based synthetic aperture radar interferometry phase unwrapping

被引:1
|
作者
Zhou, Lifan [1 ]
Yu, Hanwen [2 ]
机构
[1] Changshu Inst Technol, Sch Comp Sci & Engn, Suzhou 215500, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金; 欧盟地平线“2020”;
关键词
Phased arrays; NASA; Radar; Benchmark testing; Surfaces; Signal processing; Synthetic aperture radar interferometry; Noise level; Deformation; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1109/MGRS.2024.3359691
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article presents a large and diverse benchmark dataset, InSAR-DLPU, consisting of 31,100 pairs of wrapped and absolute phase patches to support deep learning (DL) studies of phase unwrapping (PU) techniques in synthetic aperture radar interferometry (InSAR) signal processing. Each pair of patches in this dataset is generated by all the terrain data in China, provided by the 30-m-resolution NASA Shuttle Radar Topography Mission (SRTM) digital elevation map (DEM) database. To the best of our knowledge, InSAR-DLPU is the first public dataset offering a benchmark for DL-based InSAR PU tasks. Based on this dataset, we can extensively validate and compare existing deep convolutional neural networks (DCNNs). Moreover, owing to the high diversity of topographic features and noise levels, this dataset has better information richness, which can improve the generalization ability of DL-based PU methods. We have made InSAR-DLPU publicly available at https://github.com/zhoulifan/InSAR-DLPU, offering an important resource to support studies on DL-based PU in InSAR applications (e.g., topographic mapping and deformation monitoring).
引用
收藏
页码:118 / 124
页数:7
相关论文
共 50 条
  • [1] A Review on Deep-learning-based Phase Unwrapping Technique for Synthetic Aperture Radar Interferometry
    Baek, Won-Kyung
    Jung, Hyung-Sup
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 1589 - 1605
  • [2] Anisotropic Phase Unwrapping for Synthetic Aperture Radar Interferometry
    Danudirdjo, Donny
    Hirose, Akira
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (07): : 4116 - 4126
  • [3] On the importance of path for phase unwrapping in synthetic aperture radar interferometry
    Osmanoglu, Batuhan
    Dixon, Timothy H.
    Wdowinski, Shimon
    Cabral-Cano, Enrique
    [J]. APPLIED OPTICS, 2011, 50 (19) : 3205 - 3220
  • [4] Automatic phase unwrapping algorithms in Synthetic Aperture Radar (SAR) Interferometry
    Akerson, JJ
    Yang, YCE
    Hara, Y
    Wu, BI
    Kong, JA
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2000, E83C (12) : 1896 - 1904
  • [5] 2-D phase unwrapping in Synthetic Aperture Radar interferometry
    Vidal-Pantaleoni, A
    Oviol, R
    Ferrando, M
    [J]. REMOTE SENSING IN THE 21ST CENTURY: ECONOMIC AND ENVIRONMENTAL APPLICATIONS, 2000, : 275 - 282
  • [6] DEEP LEARNING-BASED LIKELIHOOD PHASE UNWRAPPING FOR MULTI-BASELINE INSAR INTERFEROGRAMS
    Zhou, Lifan
    Yu, Hanwen
    Wang, Yong
    Xing, Mengdao
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5226 - 5229
  • [7] Deep Learning-Based Phase Unwrapping Method
    Li, Dongxu
    Xie, Xianming
    [J]. IEEE ACCESS, 2023, 11 : 85836 - 85851
  • [8] A Deep Learning-based Model for Phase Unwrapping
    Spoorthi, G. E.
    Gorthi, Subrahmanyam
    Gorthi, Rama Krishna Sai
    [J]. ELEVENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2018), 2018,
  • [9] Deep learning-based explainable target classification for synthetic aperture radar images
    Mandeep
    Pannu, Husanbir Singh
    Malhi, Avleen
    [J]. 2020 13TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2020, : 34 - 39
  • [10] PHASE UNWRAPPING THROUGH FRINGE-LINE DETECTION IN SYNTHETIC-APERTURE RADAR INTERFEROMETRY
    LIN, Q
    VESECKY, JF
    ZEBKER, HA
    [J]. APPLIED OPTICS, 1994, 33 (02): : 201 - 208