Discovery of a Single-Band Mott Insulator in a van der Waals Flat-Band Compound

被引:11
|
作者
Gao, Shunye [1 ,2 ,3 ,4 ]
Zhang, Shuai [1 ,2 ,3 ]
Wang, Cuixiang [1 ,2 ,3 ]
Yan, Shaohua [5 ,6 ]
Han, Xin [1 ,2 ,3 ]
Ji, Xuecong [1 ,2 ,3 ]
Tao, Wei [1 ,2 ]
Liu, Jingtong [1 ,2 ]
Wang, Tiantian [1 ,2 ]
Yuan, Shuaikang [1 ,2 ]
Qu, Gexing [1 ,2 ,3 ]
Chen, Ziyan [1 ,2 ,3 ]
Zhang, Yongzhao [1 ,2 ,3 ]
Huang, Jierui [1 ,2 ,3 ]
Pan, Mojun [1 ,2 ,3 ]
Peng, Shiyu [1 ,2 ,3 ]
Hu, Yong [4 ]
Li, Hang [4 ]
Huang, Yaobo [7 ]
Zhou, Hui [1 ,2 ,3 ]
Meng, Sheng [1 ,2 ,3 ,8 ]
Yang, Liu [9 ,10 ]
Wang, Zhiwei [9 ,10 ,11 ]
Yao, Yugui [9 ,10 ]
Chen, Zhiguo [1 ,2 ,8 ]
Shi, Ming [12 ,13 ]
Ding, Hong [1 ,2 ,3 ,8 ]
Yang, Huaixin [1 ,2 ,3 ,8 ]
Jiang, Kun [1 ,2 ,3 ,8 ]
Li, Yunliang [1 ,2 ,3 ,8 ]
Lei, Hechang [5 ,6 ]
Shi, Youguo [1 ,2 ,3 ,8 ]
Weng, Hongming [1 ,2 ,3 ,8 ]
Qian, Tian [1 ,2 ,8 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Inst Phys, Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Paul Scherrer Inst, Photon Sci Div, CH-5232 Villigen, Switzerland
[5] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[6] Renmin Univ China, Beijing Key Lab Optoelect Funct Mat & Micronano De, Beijing 100872, Peoples R China
[7] Chinese Acad Sci, Shanghai Synchrotron Radiat Facil, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
[8] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[9] Beijing Inst Technol, Sch Phys, Minist Educ, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
[10] Beijing Inst Technol, Micronano Ctr, Beijing Key Lab Nanophoton & Ultrafine Optoelect S, Beijing 100081, Peoples R China
[11] Beijing Inst Technol, Yangtze Delta Reg Acad, Mat Sci Ctr, Jiaxing 314011, Peoples R China
[12] Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310058, Peoples R China
[13] Zhejiang Univ, Dept Phys, Hangzhou 310058, Peoples R China
来源
PHYSICAL REVIEW X | 2023年 / 13卷 / 04期
基金
北京市自然科学基金; 瑞士国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; NB3X8; X; TRANSITION; TEMPERATURE; BEHAVIOR; PEIERLS; HUBBARD; PHYSICS; VIEW; VO2;
D O I
10.1103/PhysRevX.13.041049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Mott insulator provides an excellent foundation for exploring a wide range of strongly correlated physical phenomena, such as high-temperature superconductivity, quantum spin liquid, and colossal magnetoresistance. A Mott insulator with the simplest degree of freedom is an ideal and highly desirable system for studying the fundamental physics of Mottness. In this study, we have unambiguously identified such an anticipated Mott insulator in a van der Waals layered compound Nb3Cl8. In the high-temperature phase, where interlayer coupling is negligible, density functional theory calculations for the monolayer of Nb3Cl8 suggest a half-filled flat band at the Fermi level, whereas angle-resolved photoemission spectroscopy experiments observe a large gap. This observation is perfectly reproduced by dynamical mean-field theory calculations considering strong electron correlations, indicating a correlation-driven Mott insulator state. Since this half-filled band derived from a single 2a1 orbital is isolated from all other bands, the monolayer of Nb3Cl8 is an ideal realization of the celebrated single-band Hubbard model. Upon decreasing the temperature, the bulk system undergoes a phase transition, where structural changes significantly enhance the interlayer coupling. This results in a bonding-antibonding splitting in the Hubbard bands, while the Mott gap remains dominant. Our discovery provides a simple and seminal model system for investigating Mott physics and other emerging correlated states.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Electrical detection of the flat-band dispersion in van der Waals field-effect structures
    Gabriele Pasquale
    Edoardo Lopriore
    Zhe Sun
    Kristiāns Čerņevičs
    Fedele Tagarelli
    Kenji Watanabe
    Takashi Taniguchi
    Oleg V. Yazyev
    Andras Kis
    [J]. Nature Nanotechnology, 2023, 18 : 1416 - 1422
  • [2] Electrical detection of the flat-band dispersion in van der Waals field-effect structures
    Pasquale, Gabriele
    Lopriore, Edoardo
    Sun, Zhe
    Cernevics, Kristians
    Tagarelli, Fedele
    Watanabe, Kenji
    Taniguchi, Takashi
    Yazyev, Oleg V.
    Kis, Andras
    [J]. NATURE NANOTECHNOLOGY, 2023, 18 (12) : 1416 - 1422
  • [3] Flat-Band Electronic Bipolarity in a Janus and Kagome van der Waals Semiconductor Nb3TeI7
    Yun, Jo Hyun
    Sung, Minki
    Choi, Minhyuk
    Kim, Kyoo
    Yang, Wooin
    Kim, Dowook
    Kim, Min Joong
    Her, Sung-Hyuk
    Choi, Si-Young
    Kim, Tae-Hwan
    Kim, Jae Young
    Yeom, Han Woong
    Kim, Jun Sung
    [J]. Advanced Materials,
  • [5] MOTT-SCHOTTKY PLOTS AND FLAT-BAND POTENTIALS FOR SINGLE-CRYSTAL RUTILE ELECTRODES
    COOPER, G
    TURNER, JA
    NOZIK, AJ
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (09) : 1973 - 1977
  • [6] Flat-band potential of a semiconductor: using the Mott-Schottky equation
    Gelderman, K.
    Lee, L.
    Donne, S. W.
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2007, 84 (04) : 685 - 688
  • [7] Flat-band ferromagnetism in a correlated topological insulator on a honeycomb lattice
    Leite, Leonardo S. G.
    Doretto, R. L.
    [J]. PHYSICAL REVIEW B, 2022, 106 (15)
  • [8] MOTT INSULATOR-SUPERFLUID TRANSITION IN A GENERALIZED BOSE-HUBBARD MODEL WITH TOPOLOGICALLY NONTRIVIAL FLAT-BAND
    Zhang, Xing-Hai
    Kou, Su-Peng
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (04):
  • [9] Unfolding the band structure of van der Waals heterostructures
    Vailakis, Georgios
    Kopidakis, Georgios
    [J]. PHYSICAL REVIEW MATERIALS, 2023, 7 (02)
  • [10] Band Engineering of Dirac Surface States in Topological-Insulator-Based van der Waals Heterostructures
    Chang, Cui-Zu
    Tang, Peizhe
    Feng, Xiao
    Li, Kang
    Ma, Xu-Cun
    Duan, Wenhui
    He, Ke
    Xue, Qi-Kun
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (13)