Self-Supervised Graph Learning for Long-Tailed Cognitive Diagnosis

被引:0
|
作者
Wang, Shanshan [1 ,2 ]
Zeng, Zhen [1 ]
Yang, Xun [3 ]
Zhang, Xingyi [1 ]
机构
[1] Anhui Univ, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cognitive diagnosis is a fundamental yet critical research task in the field of intelligent education, which aims to discover the proficiency level of different students on specific knowledge concepts. Despite the effectiveness of existing efforts, previous methods always considered the mastery level on the whole students, so they still suffer from the Long Tail Effect. A large number of students who have sparse interaction records are usually wrongly diagnosed during inference. To relieve the situation, we proposed a Self-supervised Cognitive Diagnosis (SCD) framework which leverages the self-supervised manner to assist the graph-based cognitive diagnosis, then the performance on those students with sparse data can be improved. Specifically, we came up with a graph confusion method that drops edges under some special rules to generate different sparse views of the graph. By maximizing the cross-view consistency of node representations, our model could pay more attention on long-tailed students. Additionally, we proposed an importance-based view generation rule to improve the influence of long-tailed students. Extensive experiments on real-world datasets show the effectiveness of our approach, especially on the students with much sparser interaction records. Our code is available at https://github.com/zeng-zhen/SCD.
引用
收藏
页码:110 / 118
页数:9
相关论文
共 50 条
  • [1] Frequency-Aware Self-Supervised Long-Tailed Learning
    Lin, Ci-Siang
    Chen, Min-Hung
    Wang, Yu-Chiang Frank
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 963 - 972
  • [2] Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition
    Zhang, Yifan
    Hooi, Bryan
    Hong, Lanqing
    Feng, Jiashi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [3] Progressively Balanced Supervised Contrastive Representation Learning for Long-Tailed Fault Diagnosis
    Peng, Peng
    Lu, Jiaxun
    Tao, Shuting
    Ma, Ke
    Zhang, Yi
    Wang, Hongwei
    Zhang, Heming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [4] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [5] Targeted Supervised Contrastive Learning for Long-Tailed Recognition
    Li, Tianhong
    Cao, Peng
    Yuan, Yuan
    Fan, Lijie
    Yang, Yuzhe
    Feris, Rogerio
    Indyk, Piotr
    Katabi, Dina
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6908 - 6918
  • [6] Graph Adversarial Self-Supervised Learning
    Yang, Longqi
    Zhang, Liangliang
    Yang, Wenjing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [7] Graph Self-Supervised Learning: A Survey
    Liu, Yixin
    Jin, Ming
    Pan, Shirui
    Zhou, Chuan
    Zheng, Yu
    Xia, Feng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5879 - 5900
  • [8] Self-supervised Graph Learning with Segmented Graph Channels
    Gao, Hang
    Li, Jiangmeng
    Zheng, Changwen
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 293 - 308
  • [9] Contrastive-weighted self-supervised model for long-tailed data classification with vision transformer augmented
    Hou, Rujie
    Chen, Jinglong
    Feng, Yong
    Liu, Shen
    He, Shuilong
    Zhou, Zitong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 177
  • [10] Graph Self-supervised Learning with Accurate Discrepancy Learning
    Kim, Dongki
    Baek, Jinheon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,