Bayesian inference on parameters and reliability characteristics for inverse Xgamma distribution under adaptive-general progressive Type-II censoring

被引:0
|
作者
Gangopadhyay, Aditi Kar [1 ]
Mondal, Rajendranath [1 ]
Lodhi, Chandrakant [2 ]
Maiti, Kousik [3 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, India
[2] Energy Inst Bengaluru, Ctr RGIPT, Bengaluru 562157, India
[3] Haldia Inst Technol, Sch Appl Sci & Humanities, Haldia 721657, India
关键词
Maximum likelihood estimation; MCMC method; Adaptive -general progressive type -II censoring; Mean squared error; Confidence interval; Credible interval; Inverse Xgamma distribution; ESTIMATOR; MODEL;
D O I
10.1016/j.jrras.2024.100890
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we focus on estimating an unknown parameter in the context of the inverse Xgamma distibution (IXGD), particularly when dealing with an adaptive-general progressive Type-II censoring scheme. Our approach encompasses both point and interval estimates. For point estimation, we employ two distinct methods: the maximum likelihood method and Bayesian estimation. In the Bayesian estimation method, we leverage the Markov Chain Monte Carlo (MCMC) technique to derive estimates, considering both symmetric and asymmetric loss functions. In terms of interval estimation, we provide two types of intervals, namely, asymptotic confidence intervals (ACIs) and credible intervals. ACIs are calculated based on the observed Fisher Information, while taking into account the asymptotic normality properties of the maximum likelihood estimator (MLE) and the logtransformed MLE. To evaluate the performance of our proposed estimation techniques, we conduct an extensive simulation study. Additionally, we put the IXGD model to practical use by applying it to real-life data, thus assessing its applicability in real-world scenarios.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme
    Yadav A.S.
    Sen S.
    Maiti S.S.
    Saha M.
    Shukla S.
    [J]. Annals of Data Science, 2023, 10 (02) : 455 - 479
  • [2] Statistical Inference for Gompertz Distribution Using the Adaptive-General Progressive Type-II Censored Samples
    Abu-Moussa, M.H.
    El-Din, M. M. Mohie
    Mosilhy, M.A.
    [J]. American Journal of Mathematical and Management Sciences, 2021, 40 (03) : 189 - 211
  • [3] Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal
    Kumar M.
    Singh S.K.
    Singh U.
    [J]. International Journal of System Assurance Engineering and Management, 2018, 9 (6) : 1235 - 1249
  • [4] E-Bayesian inference for xgamma distribution under progressive type II censoring with binomial removals and their applications
    Pathak, Anurag
    Kumar, Manoj
    Singh, Sanjay Kumar
    Singh, Umesh
    Tiwari, Manoj Kumar
    Kumar, Sandeep
    [J]. INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2024, 44 (03): : 136 - 155
  • [5] Inference for Unit Inverse Weibull Distribution Under Block Progressive Type-II Censoring
    Singh, Kundan
    Tripathi, Yogesh Mani
    Lodhi, Chandrakant
    Wang, Liang
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2024, 18 (03)
  • [6] Statistical inference for the reliability of Burr-XII distribution under improved adaptive Type-II progressive censoring
    Yan, Weian
    Li, Piao
    Yu, Yingxia
    [J]. APPLIED MATHEMATICAL MODELLING, 2021, 95 : 38 - 52
  • [7] Statistical inference for Gompertz distribution under adaptive type-II progressive hybrid censoring
    Lv, Qi
    Tian, Yajie
    Gui, Wenhao
    [J]. JOURNAL OF APPLIED STATISTICS, 2024, 51 (03) : 451 - 480
  • [8] Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive type-II censoring
    Sultan, K. S.
    Alsadat, N. H.
    Kundu, Debasis
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (10) : 2248 - 2265
  • [9] Bayesian Inference for Weibull Distribution under the Balanced Joint Type-II Progressive Censoring Scheme
    Mondal, Shuvashree
    Kundu, Debasis
    [J]. American Journal of Mathematical and Management Sciences, 2020, 39 (01) : 56 - 74
  • [10] Bayesian estimation of the survival characteristics for Hjorth distribution under progressive type-II censoring
    Yadav, Abhimanyu Singh
    Bakouch, Hassan S.
    Chesneau, Christophe
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (03) : 882 - 900