The m-bipartite Ramsey number of the K2,2 versus K6,6

被引:0
|
作者
Rowshan, Yaser [1 ]
机构
[1] Inst Adv Studies Basic Sci IASBS, Dept Math, Zanjan 6673145137, Iran
来源
关键词
Ramsey numbers; bipartite Ramsey numbers; complete graphs; m -bipartite Ramsey number;
D O I
10.47443/cm.2022.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the given bipartite graphs G1, ... , Gn , the bipartite Ramsey number BR(G1, ... , Gn) is the least positive integer b such that any complete bipartite graph K-b,K-b having edges coloured with 1, 2, ... , n , contains a copy of some G(i) (1 <= i <= n), where all the edges of G(i) have colour i . For the given bipartite graphs G1, ... , Gn and a positive integer m , the m-bipartite Ramsey number BRm(G1, ... ,G(n)) is defined as the least positive integer b (b >= m) such that any complete bipartite graph K-m,K-b having edges coloured with 1, 2, ... , n , contains a copy of some G(i) (1 <= i <= n), where all the edges of G i have colour i . The values of BRm(G(1), G(2)) (for each m ), BRm(K-3,K-3,K- K-3,K-3 ) and BRm(K-2,K-2,K- K-2,K-2 K-5,K-5) (for particular values of m ) have already been determined in several articles, where G(1) = K-2,K-2 and G(2) is an element of { K-3,K-3 K-4,K-4} . In this article, the value of BRm(K-2,K-2, K-2,K-2 K-6,K-6) is computed for each m is an element of {2,3, ... , 8} .
引用
收藏
页码:36 / 42
页数:7
相关论文
共 50 条
  • [1] The bipartite K2,2-free process and bipartite Ramsey number b(2, t)
    Bal, Deepak
    Bennett, Patrick
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 13
  • [2] A note on the Ramsey number of K2,2 versus K3,n
    Lortz, Roland
    [J]. DISCRETE MATHEMATICS, 2006, 306 (22) : 2976 - 2982
  • [3] The Bipartite Ramsey Numbers b(C2m; K2,2)
    Zhang Rui
    Sun Yongqi
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [4] Bipartite Ramsey theorems for multiple copies of K2,2
    Henning, MA
    Oellermann, OR
    [J]. UTILITAS MATHEMATICA, 1998, 54 : 13 - 23
  • [5] K2,2-K1,n and K2,n-K2,n bipartite Ramsey numbers
    Carnielli, WA
    Carmelo, ELM
    [J]. DISCRETE MATHEMATICS, 2000, 223 (1-3) : 83 - 92
  • [6] The Existence of (K2 × K6)-Designs
    Chengmin Wang
    Charles J. Colbourn
    [J]. Graphs and Combinatorics, 2013, 29 : 1557 - 1567
  • [7] The graph Ramsey number R(Fl, K6)
    Kadota, Shin-Ya
    Onozuka, Tomokazu
    Suzuki, Yuta
    [J]. DISCRETE MATHEMATICS, 2019, 342 (04) : 1028 - 1037
  • [8] Off-diagonal and asymptotic results on the Ramsey number r(K2,m,K2,n)
    Lortz, R
    Mengersen, I
    [J]. JOURNAL OF GRAPH THEORY, 2003, 43 (04) : 252 - 268
  • [9] The m-Bipartite Ramsey Number BRm(H1, H2)
    Rowshan, Yaser
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 893 - 911
  • [10] A Note on multicolor bipartite Ramsey numbers for K2,n
    Laber, ES
    Carmelo, ELM
    [J]. ARS COMBINATORIA, 2003, 69 : 285 - 288