Efficient Algorithm for Computing Inverse of Parametric Matrices

被引:0
|
作者
Dehghani Darmian, Mahdi [1 ,2 ]
机构
[1] Tech & Vocat Univ TVU, Dept Math, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Parametric matrices; GES algorithm; IMS algorithm; Gauss-Jordan system; Inverse matrix system; GROBNER SYSTEMS;
D O I
10.47743/SACS.2024.1.1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study and compute the inverse of matrices with parametric entries. We demonstrate that the Gauss-Jordan method can be extended to compute the inverse of parametric matrices, offering a powerful tool for solving systems of linear equations and analyzing parametric systems. Using this new expansion (so-called Gauss-Jordan systems) and also utilizing linearly dependency systems for linear systems involving parameters [4, 5], we introduce the notion of an inverse matrix system for a parametric matrix. In doing so, we decompose the space of parameters into a finite partition and for each partition, we give the corresponding inverse matrix without applying Gr & uuml;bner systems. We also present an algorithm for computing an inverse system for a given parametric matrix. All mentioned algorithms have been implemented in Maple , and their efficiency and behavior have been experimented on a set of benchmark matrices.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] An efficient method for computing the inverse of arrowhead matrices
    Najafi, H. Saberi
    Edalatpanah, S. A.
    Gravvanis, G. A.
    APPLIED MATHEMATICS LETTERS, 2014, 33 : 1 - 5
  • [2] Interpolation algorithm for computing Drazin inverse of polynomial matrices
    Petkovic, Marko D.
    Stanimirovic, Predrag S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 526 - 539
  • [3] A p-adic algorithm for computing the inverse of integer matrices
    Haramoto, H.
    Matsumoto, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 320 - 322
  • [4] An Efficient Algorithm for Computing Parametric Multivariate Polynomial GCD
    Kapur, Deepak
    Lu, Dong
    Monagan, Michael
    Sun, Yao
    Wang, Dingkang
    ISSAC'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2018, : 239 - 246
  • [5] An efficient approach for computing optimal low-rank regularized inverse matrices
    Chung, Julianne
    Chung, Matthias
    INVERSE PROBLEMS, 2014, 30 (11)
  • [6] AN ITERATIVE METHOD FOR COMPUTING INVERSE MATRICES
    Hamilton, May
    BRITISH JOURNAL OF PSYCHOLOGY-STATISTICAL SECTION, 1952, 5 : 181 - 188
  • [7] AN EFFICIENT ALGORITHM FOR COMPUTING COVARIANCE MATRICES FROM DATA WITH MISSING VALUES
    ENGELMAN, L
    COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1982, 11 (01): : 113 - 121
  • [8] An efficient algorithm for computing a comprehensive Grobner system of a parametric polynomial system
    Kapur, Deepak
    Sun, Yao
    Wang, Dingkang
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 49 : 27 - 44
  • [9] To solving inverse eigenvalue problems for parametric matrices
    Kublanovskaya V.N.
    Khazanov V.B.
    Journal of Mathematical Sciences, 2007, 141 (6) : 1668 - 1677
  • [10] ALGORITHM FOR COMPUTING CORRELATION MATRICES
    WRIGHT, WR
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1972, 23 (02): : 130 - &