Multivariate Mittag-Leffler Solution for a Forced Fractional-Order Harmonic Oscillator

被引:1
|
作者
Mendiola-Fuentes, Jessica [1 ]
Guerrero-Ruiz, Eugenio [2 ]
Rosales-Garcia, Juan [3 ]
机构
[1] Univ Caribe, Dept Ciencias Bas & Ingn, L-1 Mz 1,Esq Fracc Tabachines SM 78, Cancun 77528, Quintana Roo, Mexico
[2] Univ Puerto Rico, Fac Nat Sci, Dept Math, Ave Univ Suite 17 1701, San Juan, PR 00925 USA
[3] Univ Guanajuato, Dept Ingn Elect, Div Ingn, Campus Irapuato Salamanca,Carretera Salamanca Vall, Salamanca 36885, Guanajuato, Mexico
关键词
fractional forced oscillator; multivariate Mittag-Leffler function; fractional calculus; multivariate Laplace transform; CALCULUS;
D O I
10.3390/math12101502
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The harmonic oscillator is a fundamental physical-mathematical system that allows for the description of a variety of models in many fields of physics. Utilizing fractional derivatives instead of traditional derivatives enables the modeling of a more diverse array of behaviors. Furthermore, if the effect of the fractional derivative is applied to each of the terms of the differential equation, this will involve greater complexity in the description of the analytical solutions of the fractional differential equation. In this work, by using the Laplace method, the solutions to the multiple-term forced fractional harmonic oscillator are presented, described through multivariate Mittag-Leffler functions. Additionally, the cases of damped and undamped free fractional harmonic oscillators are addressed. Finally, through simulations, the effect of the fractional non-integer derivative is demonstrated, and the consistency of the result is verified when recovering the integer case.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Mittag-Leffler fractional-order difference observer
    Miguel Delfin-Prieto, Sergio
    Martinez-Guerra, Rafael
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (05): : 2997 - 3018
  • [2] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [3] Robust Mittag-Leffler stabilisation of fractional-order systems
    Jonathan Munoz-Vazquez, Aldo
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    Martinez-Reyes, Fernando
    ASIAN JOURNAL OF CONTROL, 2020, 22 (06) : 2273 - 2281
  • [4] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [5] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
    Wang Qiao
    Ding Dong-Sheng
    Qi Dong-Lian
    CHINESE PHYSICS B, 2015, 24 (06)
  • [6] Mittag-Leffler Stability of Homogeneous Fractional-Order Systems With Delay
    Lien, Nguyen Thi
    Hien, Le Van
    Thang, Nguyen Nhu
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3243 - 3248
  • [7] FRACTIONAL-ORDER EXTREME LEARNING MACHINE WITH MITTAG-LEFFLER DISTRIBUTION
    Niu, Haoyu
    Chen, Yuquan
    Chen, YangQuan
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 9, 2019,
  • [8] On the fractional calculus of multivariate Mittag-Leffler functions
    Ozarslan, Mehmet Ali
    Fernandez, Arran
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (02) : 247 - 273
  • [9] Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law
    Bonyah, E.
    Chukwu, C. W.
    Juga, M. L.
    Fatmawati
    AIMS MATHEMATICS, 2021, 6 (08): : 8367 - 8389
  • [10] Adaptive Mittag-Leffler stabilization of commensurate fractional-order nonlinear systems
    Ding, Dongsheng
    Qi, Donglian
    Meng, Yao
    Xu, Li
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 6920 - 6926