Ion detection in a DNA nanopore FET device

被引:0
|
作者
Livernois, William [1 ]
Cao, Purunc [1 ]
Saha, Soumyadeep [2 ]
Ding, Quanchen [1 ,3 ]
Gopinath, Ashwin [4 ]
Anantram, M. P. [1 ]
机构
[1] Univ Washington, Dept Elect & Comp Engn, Seattle, WA 98195 USA
[2] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[3] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA USA
[4] MIT, Dept Mech Engn, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
DNA origami; nanopore; FET; TCAD; electrical double layer; DIELECTRIC-CONSTANT; AQUEOUS-SOLUTIONS; TCAD; SIMULATION;
D O I
10.1088/1361-6528/ad460b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An ion detection device that combines a DNA-origami nanopore and a field-effect transistor (FET) was designed and modeled to determine sensitivity of the nanodevice to the local cellular environment. Such devices could be integrated into a live cell, creating an abiotic-biotic interface integrated with semiconductor electronics. A continuum model is used to describe the behavior of ions in an electrolyte solution. The drift-diffusion equations are employed to model the ion distribution, taking into account the electric fields and concentration gradients. This was matched to the results from electric double layer theory to verify applicability of the model to a bio-sensing environment. The FET device combined with the nanopore is shown to have high sensitivity to ion concentration and nanopore geometry, with the electrical double layer behavior governing the device characteristics. A logarithmic relationship was found between ion concentration and a single FET current, generating up to 200 nA of current difference with a small applied bias.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Flossing DNA in a Dual Nanopore Device
    Liu, Xu
    Zimny, Philip
    Zhang, Yuning
    Rana, Ankit
    Nagel, Roland
    Reisner, Walter
    Dunbar, William B.
    [J]. SMALL, 2020, 16 (03)
  • [2] The detection of DNA using a silicon nanopore
    Heng, JB
    Dimitrov, V
    Grinkova, YV
    Ho, C
    Kim, T
    Muller, D
    Sligar, S
    Sorsch, T
    Twesten, R
    Timp, R
    Timp, G
    [J]. 2003 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, TECHNICAL DIGEST, 2003, : 767 - 770
  • [3] Detection of DNA Methylation with Aerolysin Nanopore
    Yu, Jie
    Cao, Chan
    Yang, Jie
    Long, Yi-tao
    [J]. BIOPHYSICAL JOURNAL, 2017, 112 (03) : 332A - 332A
  • [4] Detection of DNA homopolymer with graphene nanopore
    Zhou, Lei
    Li, Kun
    Li, Zhongwu
    He, Pinyao
    Lin, Kabin
    Mo, Jingwen
    Ma, Jian
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2019, 37 (06):
  • [5] Nanopore Integrated Nanogaps for DNA Detection
    Fanget, Axel
    Traversi, Floriano
    Khlybov, Sergey
    Granjon, Pierre
    Magrez, Arnaud
    Forro, Laszlo
    Radenovic, Aleksandra
    [J]. NANO LETTERS, 2014, 14 (01) : 244 - 249
  • [6] Detection of base-pair mismatches in DNA using graphene-based nanopore device
    Kundu, Sourav
    Karmakar, S. N.
    [J]. NANOTECHNOLOGY, 2016, 27 (13)
  • [7] Nanopore-Based Metal Ion Detection and Metal Ion-Mediated Nanopore Sensing
    Song, Xi-Tong
    Yin, Yun-Dong
    Wu, Guo-Rong
    Xu, Ming
    Gu, Zhi-Yuan
    [J]. CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (20) : 2746 - 2757
  • [8] Detection of ribonucleotides embedded in DNA by Nanopore sequencing
    Grasso, Lavinia
    Fonzino, Adriano
    Manzari, Caterina
    Leonardi, Tommaso
    Picardi, Ernesto
    Gissi, Carmela
    Lazzaro, Federico
    Pesole, Graziano
    Muzi-Falconi, Marco
    [J]. COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [9] Nanopore Detection Assisted DNA Information Processing
    Song, Zichen
    Liang, Yuan
    Yang, Jing
    [J]. NANOMATERIALS, 2022, 12 (18)
  • [10] DNA Sequence Detection using the Nanopore MspA
    Derrington, Ian M.
    Laszlo, Andrew H.
    Manrao, Elizabeth A.
    Gundlach, Jens H.
    [J]. BIOPHYSICAL JOURNAL, 2013, 104 (02) : 527A - 527A