QMNet: Importance-Aware Message Exchange for Decentralized Multi-Agent Reinforcement Learning

被引:1
|
作者
Huang, Xiufeng [1 ]
Zhou, Sheng [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100190, Peoples R China
关键词
Wireless communication; Reinforcement learning; Scheduling; Wireless sensor networks; System performance; Mobile computing; Predictive models; Multi-agent reinforcement learning; message importance; agent scheduling; decentralized multi-access mechanism;
D O I
10.1109/TMC.2023.3296726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To improve the performance of multi-agent reinforcement learning under the constraint of wireless resources, we propose a message importance metric and design an importance-aware scheduling policy to effectively exchange messages. The key insight is spending the precious communication resources on important messages. The message importance depends not only on the messages themselves, but also on the needs of agents who receive them. Accordingly, we propose a query-message-based architecture, called QMNet. Agents generate queries and messages with the environment observation. Sharing queries can help calculate message importance. Exchanging messages can help agents cooperate better. Besides, we exploit the message importance to deal with random access collisions in decentralized systems. Furthermore, a message prediction mechanism is proposed to compensate for messages that are not transmitted. Finally, we evaluate the proposed schemes in a traffic junction environment, where only a fraction of agents can send messages due to limited wireless resources. Results show that QMNet can extract valuable information to guarantee the system performance even when only 30% of agents can share messages. By exploiting message prediction, the system can further save 40% of wireless resources. The importance-aware decentralized multi-access mechanism can effectively avoid collisions, achieving almost the same performance as centralized scheduling.
引用
收藏
页码:4739 / 4751
页数:13
相关论文
共 50 条
  • [1] Importance-Aware Message Exchange and Prediction for Multi-Agent Reinforcement Learning
    Huang, Xiufeng
    Zhou, Sheng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 6493 - 6498
  • [2] IALight: Importance-Aware Multi-Agent Reinforcement Learning for Arterial Traffic Cooperative Control
    Wei, Lu
    Zhang, Xiaoyan
    Fan, Lijun
    Gao, Lei
    Yang, Jian
    PROMET-TRAFFIC & TRANSPORTATION, 2025, 37 (01): : 151 - 169
  • [3] Decentralized Deterministic Multi-Agent Reinforcement Learning
    Grosnit, Antoine
    Cai, Desmond
    Wynter, Laura
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1548 - 1553
  • [4] Specification Aware Multi-Agent Reinforcement Learning
    Ritz, Fabian
    Phan, Thomy
    Mueller, Robert
    Gabor, Thomas
    Sedlmeier, Andreas
    Zeller, Marc
    Wieghardt, Jan
    Schmid, Reiner
    Sauer, Horst
    Klein, Cornel
    Linnhoff-Popien, Claudia
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2021, 2022, 13251 : 3 - 21
  • [5] Multi-Agent Reinforcement Learning With Decentralized Distribution Correction
    Li, Kuo
    Jia, Qing-Shan
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 1684 - 1696
  • [6] Multi-agent Reinforcement Learning for Decentralized Stable Matching
    Taywade, Kshitija
    Goldsmith, Judy
    Harrison, Brent
    ALGORITHMIC DECISION THEORY, ADT 2021, 2021, 13023 : 375 - 389
  • [7] Multi-agent reinforcement learning as a rehearsal for decentralized planning
    Kraemer, Landon
    Banerjee, Bikramjit
    NEUROCOMPUTING, 2016, 190 : 82 - 94
  • [8] Decentralized Multi-agent Reinforcement Learning with Shared Actions
    Mishra, Rajesh K.
    Vasal, Deepanshu
    Vishwanath, Sriram
    2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [9] Multi-Agent Reinforcement Learning With Decentralized Distribution Correction
    Li, Kuo
    Jia, Qing-Shan
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 1684 - 1696
  • [10] Group and Socially Aware Multi-Agent Reinforcement Learning
    Vallecha, Manav
    Kala, Rahul
    2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 73 - 78