Polymer of Intrinsic Microporosity Enabled pH-Responsive Adsorptive Membrane: Selectivity and Mechanism

被引:2
|
作者
Loh, Ching Yoong [1 ]
Burrows, Andrew D. [2 ]
Zhang, Xinyu [3 ]
Xie, Ming [1 ]
机构
[1] Univ Bath, Dept Chem Engn, Bath BA2 7AY, England
[2] Univ Bath, Dept Chem, Bath BA2 7AY, England
[3] Shandong Jianzhu Univ, Sch Civil & Environm Engn, Jinan 250101, Peoples R China
来源
ACS APPLIED ENGINEERING MATERIALS | 2024年 / 2卷 / 02期
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
dye filtration; adsorptivemembrane; polymerof intrinsic microporosity; pH-responsive polymer; cationic dye; anionic dye; ultrafiltration membrane; EFFICIENT REMOVAL; METHYL-ORANGE; DYE; WASTE; SEPARATION; BEHAVIOR; PIM-1;
D O I
10.1021/acsaenm.3c00715
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We designed and fabricated a pH-responsive amidoxime-modified polymer of intrinsic microporosity (AOPIM) membrane for the selective separation of charged dyes under varying pH conditions. The membrane was fabricated using a nonsolvent-induced phase separation method with ethanol as the nonsolvent. By utilizing the amidoxime group as the selective affinity site, the AOPIM membrane manifested charge reversals, enabling high adsorption capacity, notably with methylene blue (MB) uptake reaching 444.2 mg g(-1). In dye filtration, it achieved substantial separation efficiencies for both anionic (IC: 94.7 L m(-2) h(-1) bar(-1); 80% rejection) and cationic dyes (MB: 94.9 L m(-2) h(-1) bar(-1); 99% rejection). Furthermore, the AOPIM membrane also possesses high separation selectivity for cationic dye in a dual dye mixture at a high pH environment. Results reported here underscore the unique pH-responsive properties of the AOPIM membrane, shedding light on the application of adsorptive membranes for pollution control.
引用
收藏
页码:404 / 414
页数:11
相关论文
共 50 条
  • [1] PH-responsive branched polymer nanoparticles
    Weaver, Jonathan V. M.
    Williams, Richard T.
    Royles, Brodyck J. L.
    Findlay, Paul H.
    Cooper, Andrew I.
    Rannard, Steven P.
    SOFT MATTER, 2008, 4 (05) : 985 - 992
  • [2] pH-responsive composite nanofiltration membrane
    Wang, Wei
    Du, Qi-Yun
    Ren, Lian-Juan
    Liang, Chang-Liang
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2006, 22 (03): : 250 - 253
  • [3] Enzyme immobilization on a pH-responsive porous polymer membrane for enzymatic kinetics study
    Juan Qiao
    Lili Liu
    Ji Shen
    Li Qi
    ChineseChemicalLetters, 2021, 32 (10) : 3195 - 3198
  • [4] Enzyme immobilization on a pH-responsive porous polymer membrane for enzymatic kinetics study
    Qiao, Juan
    Liu, Lili
    Shen, Ji
    Qi, Li
    CHINESE CHEMICAL LETTERS, 2021, 32 (10) : 3195 - 3198
  • [5] pH-Responsive Polymer Nanoparticles for Drug Delivery
    Deirram, Nayeleh
    Zhang, Changhe
    Kermaniyan, Sarah S.
    Johnston, Angus P. R.
    Such, Georgina K.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (10)
  • [6] Understanding the Polymer Rearrangement of pH-Responsive Nanoparticles
    Deirram, Nayeleh
    Kermaniyan, Sarah S.
    Johnston, Angus P. R.
    Such, Georgina K.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2021, 74 (07) : 514 - 521
  • [7] pH-Responsive Polymer Nanomaterials for Tumor Therapy
    Chu, Shunli
    Shi, Xiaolu
    Tian, Ye
    Gao, Fengxiang
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [8] Ionic Strength and pH-Responsive Ultrafiltration Membrane to Overcome the Typical Permeability-Selectivity Tradeoff
    Chen, Yian
    Cohen, Yoram
    WATER, 2025, 17 (02)
  • [9] Characterization of Hydrogel Made by pH-responsive Polymer and Alginate
    Choi, Jiyeon
    POLYMER-KOREA, 2017, 41 (06) : 1046 - 1051
  • [10] pH-Responsive Water-Soluble Cyclic Polymer
    Miao, Zhihui
    Kubo, Tomohiro
    Pal, Digvijayee
    Sumerlin, Brent S.
    Veige, Adam S.
    MACROMOLECULES, 2019, 52 (16) : 6260 - 6265