Let phi be an analytic selfmap of the open unit disk D and g be an analytic function on D. The Volterra -type composition operators induced by the maps g and phi are defined as (I-g(phi) f ) ( z ) = integral(z)(0)f' ( phi ( zeta )) g (zeta) d zeta and (T-g(phi) f ) ( z ) = integral(z )(0)f ( phi (zeta)) g' (zeta)d zeta. For 1 <= p < infinity, S-p (D) is the space of all analytic functions on D whose first derivative f' lies in the Hardy space (H)(p) (D), endowed with the norm parallel to f parallel to(Sp) = |f(0)| + parallel to f 'parallel to(Hp). Let mu : (0 , 1] -> (0 , infinity) be a positive continuous function on D such that for z is an element of D we define mu (z) = mu (|z|). The weighted Zygmund space Z(mu)(D) is the space of all analytic functions f on D such that sup(z is an element of D) mu (z) | f" (z) | is finite. In this paper, we characterize the boundedness and compactness of the Volterra -type composition operators that act between S-p spaces and weighted Zygmund spaces.
机构:
Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R ChinaTianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
Liang, Yu-Xia
Wang, Chang-Jin
论文数: 0引用数: 0
h-index: 0
机构:
Jimei Univ, Sch Sci, Xiamen 361021, Fujian, Peoples R ChinaTianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
Wang, Chang-Jin
Zhou, Ze-Hua
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Dept Math, Tianjin 300072, Peoples R China
Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R ChinaTianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
机构:
Sultan Qaboos Univ, Coll Sci, Dept Math & Stat, POB 36, Al Khoud 36, OmanSultan Qaboos Univ, Coll Sci, Dept Math & Stat, POB 36, Al Khoud 36, Oman
Manhas, Jasbir Singh
Zhao, Ruhan
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Coll Brockport, Dept Math, Brockport, NY 14420 USA
Shantou Univ, Dept Math, Shantou 515063, Peoples R ChinaSultan Qaboos Univ, Coll Sci, Dept Math & Stat, POB 36, Al Khoud 36, Oman